LTE910XF v12.00 CAT1 Socket XF Footprint Modem User Manual

TABLE OF CONTENTS

TΑ	BLE OF CONTENTS and DISCLAIMER	. 2
1.	INTRODUCTION	. 3
	1.1 Ordering Part Numbers	
	1.2 Additional Resources	
	1.3 Product Overview	
	1.4 Block Diagram	
2.	TECHNICAL SPECIFICATIONS4	-6
	2.1 Electrical Specifications	
	2.2 Mechanical Specifications	
	2.3 Environmental Specifications	
3.	IMPORTANT DESIGN CONSIDERATIONS	. 7
	3.1 ON_OFF Signal	
	3.2 Power Supply Requirements	
	3.3 Serial Communications	
	3.4 Network Connection Status LED	
4.	MOUNTING GUIDELINES8-	10
	4.1 Board to Board Connectors Approach	
	4.2 Solder to Board Connection Approach	
	4.3 Mechanical Dimensions	
5.	ANTENNA CONSIDERATIONS	11
	5.1 Antenna Requirements	
	5.2 Recommended Antennas	
6.	CERTIFICATIONS	11
7.	FEDERAL REGULATORY LICENSING	11
	7.1 ECCN Number	
	7.2 HTS Codes	
8.	END PRODUCT LABELING REQUIREMENTS	11
	REVISION HISTORY	12

DISCLAIMER

The information contained in this document is the proprietary information of Connor-Winfield Corporation and its affiliates (Janus Remote Communication). The contents are confidential and any disclosure to persons other than the officers, employees, agents or subcontractors of the owner or licensee of this document, without the prior written consent of Connor-Winfield, is strictly prohibited. Connor-Winfield makes every effort to ensure the quality of the information it makes available. Notwithstanding the foregoing, Connor-Winfield does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the information. Connor-Winfield disclaims any and all responsibility for the application of the devices characterized in this document, and notes that the application of the device must comply with the safety standards of the applicable country, and where applicable, with the relevant wiring rules. Connor-Winfield reserves the right to make modifications, additions and deletions to this document due to typographical errors, inaccurate information, or improvements to programs and/or equipment at any time and without notice. Such changes will, nevertheless be incorporated into new editions of this application note.

All rights reserved 2018 Connor-Winfield Corporation

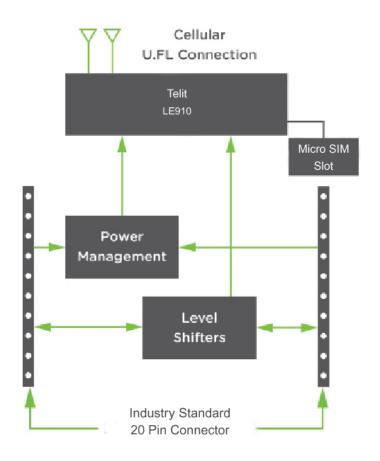
1. INTRODUCTION

1.1 Ordering Part numbers

Ordering Information	Description
LTE910XF v12.00	LTE CAT1 Socket Modem - Europe

1.2 Additional Resources

The following documents or documentation resources are referenced within this document.


Telit LE910 V2 Hardware User Guide

Telit LE910 V2 Series AT Commands Reference Guide

1.3 LTE910XF v12.00 Product Overview

Add robust, scalable, cellular connectivity to your IoT hardware solutions with the Janus line of "X" footprint (industry standard 20- pin connector) Socket Modems. Our Extensive experience in designing and manufacturing embedded radio solutions, along with our commitment to quality and reliability, makes the LTE910XF CAT1 cellular modem the most cost effective and flexible end device certified cellular modem available in the market today. It supports multiple LTE bands and fallback capability minimizing costs of hardware and network access. "End device" certification allows users to integrate any certified cellular XF modem into their application with no further carrier certification requirements, giving customer the quickest go-to-market option for their end solutions.

1.4 Block Diagram

2. TECHNICAL SPECIFICATIONS

2.1 Electrical Specifications

2.1.1 Absolute Maximum Ratings

Parameter Signal	Signal	Maximum Rating
Main Power Supply	VCC	6.3V
I/O Voltage Reference	VREF	6.5V

2.1.2 Recommended Ratings & Module Pin out

2.1.2.1 Connectors J1 and J2

Pin	Name	Direction	Description	Min	Typical	Max	If not used
1	VCC	Input	Main Power supply	3.5V	3.9V	5.5V	Must be implemented
				VOL:		VOH:	Must be implemented
2	DOUT	Output	UART data out, I/O level tied to VREF	GND to		VREF x	if USB not used,
				0.55V		0.67 to	No connection
						VREF	
				VIL:		VIH:	Must be implemented
3	DIN	Input	UART data in, I/O level tied to VREF	GND to		VREF-0.4	if USB not used,
				0.15V		V to VREF	No connection
4	GND	Input	Ground Pin		0		Must be implemented
			Controls HW_SHUTDOWN input on				
			Telit module, tie low for 200mS and				
			released to activate. Internally pulled				
5	RESET_nIN	Input	up to VCC. Drive with open collector		VREF		No Connection
			output. Assert only in an emergency				
			as the module will not gracefully exit				
			the cellular network when asserted.				
6	VUSB	Input	Supply for USB interface	4.4V	5V	5.25V	No connection
7	USB_D+	I/O	USB differential Data + signal				No connection
8	USB_D-	I/O	USB differential Data - Signal				No connection
				VIL:		VIH:	
9	DTR	Input	Modem Data Terminal Ready input	GND to		VREF-0.4	Tie to GND
				0.15V		V to VREF	
10	GND	Input	Ground Pin		0		Must be implemented
11	GND	Input	Ground Pin		0		Must be implemented
				VOL:		VOH:	
12	CTS	Output	Modem Clear to Send hardware flow	GND to		VREF x	No Connection
			control output	0.55V		0.67 to	
						VREF	
			Signal drives the onboard LED indicating				
			network status. OFF = Device OFF,				
13	ON/nSLEEP	Output	Fast blink = Searching for Network &	0		1.8V	No Connection
			Not Registered, Slow Blink = Registered				
			with full service, Permanently on = call				
			is active. See Telit AT Commands				
			Guide for additional information.				
			Voltage reference for offboard I/O signals.				
			This signal drives the input voltage side				
14	VREF	Input	of an onboard buffer which converts	1.8V	1.8V or	5.5V	Must be Implemented
		-	all external I/O voltage from VREF		3.3V		·
			range to 1.8V range to drive the				
			onboard Telit module.				
15	GND	Input	Ground Pin		0		Must be implemented

2. TECHNICAL SPECIFICATIONS continued

2.1 Electrical Specifications

2.1.2 Recommended Ratings & Module Pin out

2.1.2.1 Connectors J1 and J2 continued....

Pin	Name	Direction	Description	Min	Typical	Max	If not used
16	RTS	Input	Modem Request to Send hardware	VIL:		VIH:	
			flow control input	GND to		VREF-0.4	Tie to GND
				0.15V		V to VREF	
17	DIO3	I/O	Programmable GPIO_03 on				
			Telit module	0		1.8V	No connection
18	DIO2	I/O	Programmable GPIO_02 on				
			Telit module	0		1.8V	No connection
19	ADC1	Input	ADC_IN1 input on Telit module				
			(10bit resolution, <1.2mV)	0		1.2V	No connection
			Modem On/Off signal. Assert low for				
			at least 5 seconds and then release to				
			activate start sequence. Drive with				
20	ON_OFF	Input	open collector output. Internally	0		1.8V	Must be implemented
			pulled up to internal I/O rail with pull				
			up. Do not use any external pull ups.				
			Note: If you want modem to turn on				
			automatically when power is applied,				
			permanently tie this signal to GND.				

2.1.2.2 Connectors P4, P1, P2

Connector Designator	Description	Connector Location
P4	Micro SIM Connector	Bottom Side of Module
P1	Primary Antenna Connection	Topside of Module
P2	Secondary Antenna Connection	Topside of Module

2.1.2.3 Power Consumption^{1, 2}

Mod	de	Network	Average Current (mA)	Notes
		Idle Modes		
Off			1	
TX/RX disabled	+CFUN=4	n/a	12	Not registered on network
Idle	+CFUN=1	LTE	14	Normal mode, full function
Idle	+CFUN=1	GSM	15	Normal mode, full function
Power Saving	+CFUN=5	LTE	6.8	0.32s DRx
Power Saving	+CFUN=5	LTE	4.5	0.64s DRx
Power Saving	+CFUN=5	LTE	3	1.28s DRx
Power Saving	+CFUN=5	LTE	2.8	2.56s DRx
Power Saving	+CFUN=5	GSM	3.2	DRx2
Power Saving	+CFUN=5	GSM	2.7	DRx5
Power Saving	+CFUN=5	GSM	2.5	DRx9
		Operative Modes		
Data call		LTE	190	Tx=0dBm
Data call	Maximum power	LTE	500	Tx=22dBm
EDGE 2TX-3RX	Low Band Gamma 7	GSM	290	Sending data
EDGE 2TX-3RX	High Band Gamma 6	GSM	220	Sending data
GPRS 2TX+3RX	Low Band Gamma 3	GSM	580	Sending data
GPRS 2TX+3RX	High Band Gamma 3	GSM	350	Sending data

Note 1: These figures are derived from the component data sheets including the Telit Hardware User Guide. Per Telit, "The reported values are an average among all the product variants and bands for each network wireless technology." Results can vary depending network conditions.

Note 2: Power consumption figures are with on-board Status LED disabled.

2. TECHNICAL SPECIFICATIONS continued

2.2 Mechanical Specifications

2.2.1 Mechanical Characteristics

Parameter	Typical	Unit	Note
Dimensions (excluding pin height, for solder to board applications)	1.14" x 1.3" x 0.256	Inches	
Dimensions (including pin height, for board to board connector applications)	1.14" x 1.3" x 0.422	Inches	
Weight	9	Grams	
Connector Insertion/Removal	Hundreds	Cycles	

2.2.2 Mating Connectors

Connector Designator	Manufacture	Populated On Modem	Recommended Mate	Mate Manufacture
J1, J2	3M	951110-2530-ARPR	950510-6102-AR	3M
			Acceptable Alternate	Sullins Connector
			NPPN101BFCN-RC	Solutions
P4	JAE	SF56S006V4B	Micro SIM Card (3FF)	Cellular Carrier
P1, P2	Hirose	U.FL-R-SMT(10)	CAB.011	Taoglas

2.2.3 Device Placement

Make sure the LTE910XF is installed in the correct orientation; failure to do so will damage the device and void the warranty.

2.3 Environmental Specifications

Parameter	Min	Typical	Max	Unit	Note
Operating Temperature	-40	25	+85	°C	
Storage Temperature	-40	25	+85	°C	
Operating Humidity	20		90	%	Non-condensing

3. IMPORTANT DESIGN CONSIDERATIONS

3.1 ON_OFF Signal

To conserve power, the Telit module does not automatically start up when power is applied. The baseboard design must supply a means to assert the ON_OFF signal for the specified time (at least 5 seconds) and then released to start-up the module. After asserting the ON_OFF signal, software must wait for 15 seconds before attempting to communicate with the Telit module. To make the module automatically start when power is applied, tie ON/OFF signal to GND permanently. See Telit Hardware User Guide for additional details regarding the ON_OFF signal.

3.2 Power Supply Requirements

The equipment must be supplied by an external limited power source in compliance with the clause 2.5 of the standard IEC-60950-1. The module will regularly consume high amounts of current on the Main Power Supply (VCC), up to 2A during active transmits and receives. The baseboard power supply should be designed to support peak currents up to 2 Amps. A 100uF capacitor should be placed near the VCC pin on the module to ensure ample energy is available, with a low inductance path to the VCC pin. For example power supply designs, there are multiple references available. See the Telit Hardware User Guide which has an example of both Linear and Switching regulator designs.

3.3 Serial Communications

The Telit module can communicate over UART and/or USB. Design should implement one or both serial interfaces to be able to send commands to the modern.

3.4 Network Connection Status LED

The ON/nSLEEP signal on pin 13 drives the on-board LED indicating network status. By default, the LTE module has this setting disabled. Use the following commands to enable and save this feature.

First, configure the GPIO for alternate function:

AT#GPIO = 1,0,2

The modem should respond with:

OK

Next, set the desired LED behavior with this command:

AT#SLED=2,10,10

The modem should respond with:

OK

Finally, commit the changes to non-volatile memory so the setting will persist across power down/power up:

AT#SLEDSAV

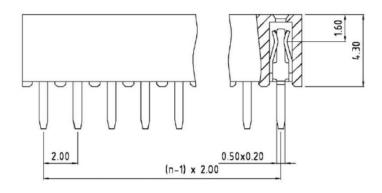
The modem should respond with:

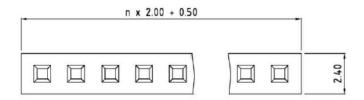
OK

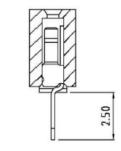
LED Status	Network Status Indication
Permanently OFF	Device OFF or setting disabled (see above)
Permanently ON	Searching for Network & Not Registered
Slow Blinking	Registered with full service
Permanently ON	Call is active (Modem has been registered)

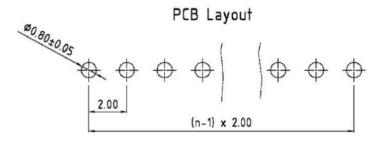
4. MOUNTING GUIDELINES

The LTE910XF embedded cellular modem supports multiple connection methods, the two primary methods are board to board connectors and soldering directly to the baseboard.

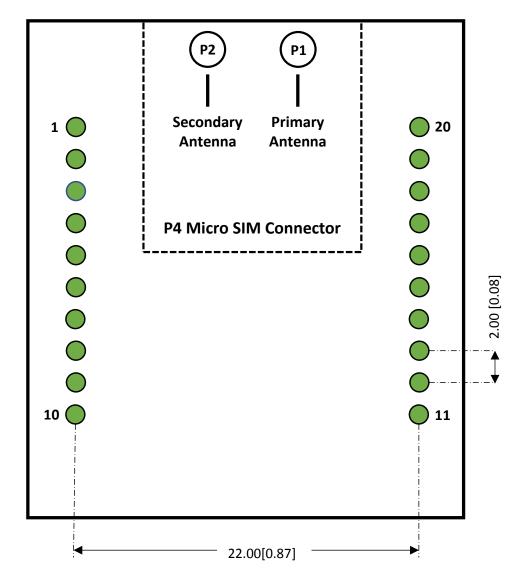

4.1 Board to Board connectors approach


The Standard Industry 20-pin form factor calls for two, 10 pin, 2mm pitch female receptacles.


There are many connector manufacturers that can be used; below is one readily available product:


Manufacturer: 3M Alternate: Sullins Connector Solutions
Part Number: 950510-6102-AR Alternate P/N: NPPN101BFCN-RC

Typical part drawing and footprint information:

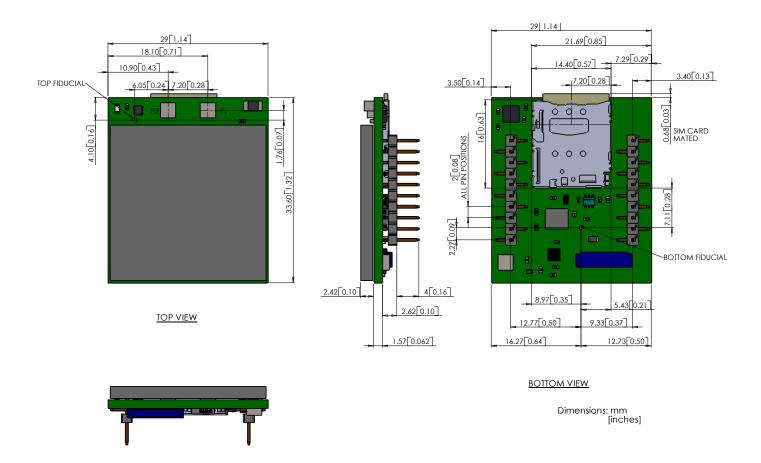

4. MOUNTING GUIDELINES continued

4.2 Solder to Board Connection Approach

The module can be soldered directly to a PCB. The PCB should be designed with two rows of ten, 0.8mm plated thru holes spaced 2mm apart. The two rows should be 22mm apart. See drawing for recommended footprint. U.FL locations are marked with circles, P1 and P2 on top side of board, P4 is Micro SIM card connector on bottom side of board.

TOP VIEW

Dimensions in mm



Dimensions: mm[inches]

4. MOUNTING GUIDELINES continued

4.3 Mechanical Dimensions

5. ANTENNA CONSIDERATIONS

5.1 Antenna Requirements

These tables are copied from Telit LE910 V2 Hardware User Guide. Designers should review latest LE910 V2 Hardware User Guide to ensure the information is up to date.

	Antenna Requirements
Frequency Range	Depending by frequency band(s) provided by the network operator, the customer
	shall use the most suitable antenna for that/those band(s).
	250 MHz in LTE Band 1
	170 MHz in LTE Band 3 / DCS1800
Bandwidth	190 MHz in LTE Band 7
	80 MHz in LTE Band 8 / GSM900
	71 MHz in LTE Band 20
Impedance	50 ohm
Input Power	>24Bm Average power
VSWR Absolute Maximum	≤ 10:1 (limit to avoid permanent damage)
VSWR Recommended	< 2:1 (limit to fulfill all regulatory requirements

5.2 Recommended Antennas

Туре	Manufacturer	Part Number
Primary & Secondary	Taoglas ¹	TG.30.8113

Note 1: U.FL to SMA adapter required.

6. CERTIFICATIONS

Radio Equipment Directive 2014/53/EU (RED) Global Certification Forum (GCF)

7. FEDERAL REGULATORY LICENSING

7.1 Export Control Classification Number (ECCN)

ECCNs are five character alpha-numeric designations used on the Commerce Control List (CCL) to identify dual-use items for export control purposes. An ECCN categorizes items based on the nature of the product, i.e. type of commodity, software, or technology and its respective technical parameters.

All LTE910XF Modems: 5A992.a

7.2 Harmonized Tariff Schedule Code

HTS Code: 8517.62.0010

8. END PRODUCT LABELING REQUIREMENTS

The Radio Equipment Directive (RED) requires that the end equipment and packaging be affixed with the CE mark. The Certificate of Conformity and supporting documentation is available from Janus.

LTE910XF v12.00 CAT1 Socket XF Footprint Modem User Manual

Revision History

Revision Revision Date Note

00 08/14/18 LTE910XF v12.00 Individual Socket User Manual Release

