

 SW Versions

GC Family (Compact)

GC864-QUAD 10.00.xx7
GC864-QUAD V2 10.00.xx7
GC864-DUAL V2 10.00.xx7
GE/GL Family (Embedded)

GE864-QUAD 10.00.xx7
GE864-QUAD V2 10.00.xx7
GE864-QUAD Automotive V2 10.00.xx7
GE864-QUAD ATEX 10.00.xx7
GE864-DUAL V2 10.00.xx7
GE864-GPS 10.00.xx7
GE865-QUAD 10.00.xx7
GL865-DUAL 10.00.xx7
GL865-QUAD 10.00.xx7
GL868-DUAL 10.00.xx7
GE910-QUAD 13.00.xx3

GE910-GNSS 13.00.xx4

GL865-DUAL V3 16.00.xx2

GL865-QUAD V3 16.00.xx3

GL868-DUAL V3 16.00.xx2

GE910-QUAD V3 16.00.xx3

GT Family (Terminal)

GT863-PY 10.00.xx7
GT864-QUAD 10.00.xx7
GT864-PY 10.00.xx7
HE910 Family

HE910
1
 12.00.xx4

HE910-GA 12.00.xx4
HE910-D 12.00.xx4
HE910-EUR / HE910-EUD 12.00.xx4
HE910-EUG / HE910-NAG 12.00.xx4
HE910-NAR / HE910-NAD 12.00.xx4
UE910 Family

UE910-EUR / UE910-EUD 12.00.xx4
UE910-NAR / UE910-NAD 12.00.xx4

Note: the features described in the present document are provided by the products equipped

with the software versions equal or higher than the versions shown in the table.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Notice

While reasonable efforts have been made to assure the accuracy of this document, Telit

assumes no liability resulting from any inaccuracies or omissions in this document, or from

use of the information obtained herein. The information in this document has been carefully

checked and is believed to be entirely reliable. However, no responsibility is assumed for

inaccuracies or omissions. Telit reserves the right to make changes to any products described

herein and reserves the right to revise this document and to make changes from time to time

in content hereof with no obligation to notify any person of revisions or changes. Telit does

not assume any liability arising out of the application or use of any product, software, or

circuit described herein; neither does it convey license under its patent rights or the rights of

others.

It is possible that this publication may contain references to, or information about Telit

products (machines and programs), programming, or services that are not announced in your

country. Such references or information must not be construed to mean that Telit intends to

announce such Telit products, programming, or services in your country.

Copyrights

This instruction manual and the Telit products described in this instruction manual may be,

include or describe copyrighted Telit material, such as computer programs stored in

semiconductor memories or other media. Laws in the Italy and other countries preserve for

Telit and its licensors certain exclusive rights for copyrighted material, including the

exclusive right to copy, reproduce in any form, distribute and make derivative works of the

copyrighted material. Accordingly, any copyrighted material of Telit and its licensors

contained herein or in the Telit products described in this instruction manual may not be

copied, reproduced, distributed, merged or modified in any manner without the express

written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed

to grant either directly or by implication, estoppel, or otherwise, any license under the

copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a

product.

Computer Software Copyrights

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual

may include copyrighted Telit and other 3rd Party supplied computer programs stored in

semiconductor memories or other media. Laws in the Italy and other countries preserve for

Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer

programs, including the exclusive right to copy or reproduce in any form the copyrighted

computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW

computer programs contained in the Telit products described in this instruction manual may

not be copied (reverse engineered) or reproduced in any manner without the express written

permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products

shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any

license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied

SW, except for the normal non-exclusive, royalty free license to use that arises by operation

of law in the sale of a product.

Usage and Disclosure Restrictions

License Agreements

The software described in this document is the property of Telit and its licensors. It is

furnished by express license agreement only and may be used only in accordance with the

terms of such an agreement.

Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is

prohibited by law. No part of the software or documentation may be reproduced, transmitted,

transcribed, stored in a retrieval system, or translated into any language or computer language,

in any form or by any means, without prior written permission of Telit

High Risk Materials

Components, units, or third-party products used in the product described herein are NOT

fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control

equipment in the following hazardous environments requiring fail-safe controls: the operation

of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic

Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s)

specifically disclaim any expressed or implied warranty of fitness for such High Risk

Activities.

Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or

service names are the property of their respective owners.

Copyright © Telit Communications S.p.A.

Scope of this document is to provide the description of the set of the Telit AT commands

relating to the SSL/TLS protocol use.

This document is intended for people that need to develop applications using secure sockets.

The reader is expected to have knowledge in wireless technology as well as in Telit’s AT

Commands interface. A basic knowledge of SSL/TLS security protocol is also needed.

For general contact, technical support, to report documentation errors and to order manuals,

contact Telit Technical Support Center (TTSC) at:

TS-EMEA@telit.com

TS-NORTHAMERICA@telit.com

TS-LATINAMERICA@telit.com

TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/en/products/technical-support-center/contact.php

For detailed information about where you can buy the Telit modules or for recommendations

on accessories and components visit:

http://www.telit.com

To register for product news and announcements or for product questions contact Telit

Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and

suggestions for improvements.

Telit appreciates feedback from the users of our information.

mailto:TS-EMEA@telit.com
mailto:TS-NORTHAMERICA@telit.com
mailto:TS-LATINAMERICA@telit.com
mailto:TS-APAC@telit.com
http://www.telit.com/en/products/technical-support-center/contact.php
http://www.telit.com/

This document contains the following chapters:

Chapter 1: provides a scope for this document, target audience, contact and support

information, and text conventions.

Chapter 2: is about context setting, activation, data states. Furthermore it gives some

information about SSL server requirements.

Chapter 3: describes the steps to be followed in order to configure security settings and data

as well as general parameters.

Chapter 4: describes how to connect the module to an SSL server and how to perform data

exchange.

Chapter 5: describes how to use an FTPS connection.

Chapter 6: SSL Error Codes.

Chapter 7: Document History.

Chapter 8: Abbreviation and acronyms.

Danger – This information MUST be followed or catastrophic equipment failure or bodily

injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if

these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when

integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

[1] AT Command Reference Guide, 80000ST10025a

[2] Telit Modules Software User Guide, 1vv0300784

[3] IP Easy User Guide, 80000ST10028A

[4] Virtual Serial Device, Application Note, 80000NT10045A

[5] HE910/UE910 Families Ports Arrangements, User Guide, 1vv0300971

[6] HE910/UE910 AT Commands Reference Guide, 80378ST10091A

Warning: the present document deals with several AT commands and Telit’s modules

families using different technologies (GSM/GPRS, HSPA). To have detailed syntax

information about the AT commands please, refer to the AT Commands Reference Guide

[1] and [6] in accordance with the used Telit module.

Before working with AT commands concerning secure sockets, the activation of a PDP

context is needed.

The PDP context parameters consist in a set of information identifying the Internet entry point

interface provided by the ISP. This can be done using the following command:

AT+CGDCONT=<cid>,IP,<APN>,…

<cid> is the PDP Context Identifier, a numeric parameter which specifies a particular PDP

context definition.

<APN> is the Access Point Name, a string that represents logical name used to select GGSN

or external packet data network.

More information about this command, such as optional parameters omitted in this

description, can be found in document [1] or [6] as stated in chapter 2.

Warning: recalling that the SSL socket can be opened only with <cid> = 1, see chapter 3.4,

therefore in AT+CGDCONT command you must set <cid> = 1, see the following example:

<APN> = “ibox.tim.it” (Italian operator “TIM”)

AT+CGDCONT=1,IP,”ibox.tim.it”, …

OK

The activation of the PDP context previously defined is performed via the next command.

More information about the context activation command can be found in the document [3].

AT#SGACT= <Cntx Id>,<Status>, [<Username>],[<Password>]

Where:

<Cntx Id> is the context that you want to activate/deactivate.

<Status> is the desired context status (0 means deactivation, 1 activation).

Warning: recalling that the SSL socket can be opened only with <cid> = 1, see chapter 3.4,

therefore in AT#SGACT command you must set <Cntx Id> = 1, see the following example:

AT#SGACT=1,1  Activate the PDP context

#SGACT:212.195.45.65

OK

In the successful case, the response message of the AT#SGACT command reports an IP

address provided by the network.

TLS and its predecessor SSL are cryptographic protocols used over the Internet to provide

secure data communication in several applications. A classic example is the HTTPS

connection between Web browsers and Web servers.

For protocol details refer to [RFC 2246; The TLS Protocol Version 1.0] .

For details about certificates refer to [RFC 2459; X509v3].

The cipher suite represents the set of algorithms which are used to negotiate the security

settings for a network connection using the SSL/TLS network protocol. The cipher suite

includes a key exchange algorithm (used for the authentication during the handshake), an

encryption algorithm (used to encrypt the message) and the hash function for data integrity.

The Tab. 1 shows the cipher suites provided by the Telit modules families. Hereafter are

specified the algorithms that are used by the cipher suites listed in the table:

TLS_RSA_WITH_RC4_128_MD5 uses:

 RSA for authentication

 RC4_128 as encryption algorithm

 MD5 as hash function for data integrity

TLS_RSA_WITH_RC4_128_SHA uses:

 RSA for authentication

 RC4_128 as encryption algorithm

 SHA as hash function for data integrity

TLS_RSA_WITH_AES_256_CBC_SHA uses:

 RSA for authentication

 AES_256 as encryption algorithm

 SHA as hash function for data integrity

TLS _RSA_WITH_AES_128_CBC_SHA uses:

 RSA for authentication

 AES_128 as encryption algorithm

 SHA as hash function for data integrity

TLS_RSA_WITH_NULL_SHA uses:

 RSA for authentication

 NULL as encryption algorithm

 SHA as hash function for data integrity

http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc2459

Tab. 1: Cipher Suites

If the server involved in the connection doesn’t support one of these cipher suites, the

protocol handshake fails.

The Telit modules allow the storage of different type of security data (Certificates, CA

Certificates, and Private Key). The maximum size of security data is 2047 bytes; this means

that a server with a bigger certificate cannot be authenticated, refer to chapter 3.3.

A procedure to get the CA certificate to be used in case of a connection to an HTTPS server is

explained in chapter 3.3.1.

Before opening an SSL socket and exchanging data through it, you need to perform the

following steps:

 SSL channel must be enabled

 Authentication settings and timeouts can be configured

 Security data can be stored within the module if the authentication is needed

Basically, these are the main steps that you have to follow, but there are slight differences

among the Telit modules families. The differences are pointed out, where it is needed, on the

next pages.

The first step to be done to provide communication security over a channel is to enable an

SSL socket. This can be performed using the following command:

AT#SSLEN= <SSId>,<Enable>

Where:

<SSId>: must be set to 1
3
. It is the only Secure Socket ID available

<Enable>: is the desired status: 0 = disable, 1 = enable.

without entering this command, any attempt to set SSL parameters by means of

an SSL AT command fails.

AT#SSLEN=1,1  Enable the SSL socket

OK

Note: After enabling SSL on an AT instance, SSL can not be used by other AT instances, it

is needed to disable it (#SSLEN=1,0) and activate it in the other instance. To have a

detailed description about instance refer to [4] and [5] in accordance with the used module.

The AT#SSLSECCFG command provides two parameters to configure the communication

channel according to the user’s security architecture:

 cipher suite

 authentication mode

Modules belonging to the GC, GE/GL, and GT families:

AT#SSLSECCFG= <SSId>,<cipher_suite>,<auth_mode>

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available

<Cipher Suite>: setting the value 0 all the available cipher suites are proposed to the server.

It is responsibility of the remote server to select one of them.

0 = TLS_RSA_WITH_RC4_128_MD5 + TLS_RSA_WITH_RC4_128_SHA +

TLS_RSA_WITH_AES_256_CBC_SHA

Setting values different from zero, only one cipher suite is proposed as follows:

1 = TLS_RSA_WITH_RC4_128_MD5

2 = TLS_RSA_WITH_RC4_128_SHA

3 = TLS_RSA_WITH_AES_256_CBC_SHA

<auth_mode>: is the authentication mode

0 = SSL verify none: no authentication, no security data is needed at all

1 = Server authentication mode: CA Certificate storage is needed (the most common

case)

2 = Server/Client authentication mode: CA Certificate (server), Certificate (client) and

Private Key (client) are needed

The authentication mode depends on the user’s application and the desired protection against

intruders. If the authentication mode is set to 1 or 2 the storing of the security data is needed.

Only PEM format is available, refer to the Warning in chapter 3.3.

Modules belonging to the HE910/UE910 families:

AT#SSLSECCFG= <SSId>,<cipher_suite>,<auth_mode>[,<cert_format>]

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available

<Cipher Suite>: setting the value 0 all the available cipher suites are proposed to the server.

It is responsibility of the remote server to select one of them.

0 =TLS_RSA_WITH_AES_128_CBC_SHA + TLS_RSA_WITH_RC4_128_SHA +

TLS_RSA_WITH_RC4_128_MD5

Setting values different from zero, only one cipher suite is proposed as follows:

1 = TLS_RSA_WITH_RC4_128_MD5

2 = TLS_RSA_WITH_RC4_128_SHA

3 = TLS_RSA_WITH_AES_128_CBC_SHA

4 = TLS_RSA_WITH_NULL_SHA

TLS_RSA_WITH_NULL_SHA cipher suite is not included when the <Cipher Suite>

parameter is set to 0. To select this cipher suite it is required to set <Cipher Suite> equal to 4.

<auth_mode>: is the authentication mode

0 = SSL verify none: no authentication, no security data is needed at all

1 = Server authentication mode: CA Certificate storage is needed (the most common

case)

2 = Server/Client authentication mode: CA Certificate (server), Certificate (client) and

Private Key (client) are needed

The authentication mode depends on the user’s application and the desired protection against

intruders. If the authentication mode is set to 1 or 2 the storing of the security data is needed.

<cert_format>: is an optional parameter. It selects the format of the certificate to be stored

via #SSLSECDATA command, refer to chapter 3.3.

0 = DER format

1 = PEM format

Note: it is assumed that the module is powered on and the AT#SSLSECCFG command is

entered without <cert_format> parameter, the default format is PEM. In this case the

AT#SSLSECCFG? read command doesn’t return the setting of the format in order to meet

retro compatibility with other families. Now, let’s assume that AT#SSLSECCFG command

is entered again, but using the <cert_format> parameter for the first time: if the read

command is entered, it reports the parameter value just used. If subsequently the

<cert_format> is omitted, the AT#SSLSECCFG? read command reports the parameter

value entered the last time.

Server or Server/Client authentication can be accomplished only if you store the proper

security data (certificate(s) and/or private key) into the module’s NVM. This operation is

performed via the AT#SSLSECDATA command.

Modules belonging to the GC, GE/GL, and GT families:

The command supports the operations of: writing, reading, and deleting. The command

syntax is:

AT#SSLSECDATA=<SSId>,<Action>,<DataType>[,<size>]

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available

<Action>: is the action to be performed

0 = deleting

1 = writing

2 = reading

<DataType>: identifies the certificate/key to be stored or read

0 Certificate of the client (module). It is needed when the Server/Client authentication

mode has been configured.

1 CA Certificate of the remote server, it is used to authenticate the remote server. It is

needed when <auth_mode> parameter of the #SSLSECCFG command is set to 1 or

2.

2 RSA private key of the client (module). It is needed if the Server/Client

authentication mode has been configured.

<size>: is the size of the stored security data.

Immediately after entering the command, the ‘>’ prompt is displayed: you can enter the

security data to be stored and confirm the editing end with the 0x1A character (<ctrl>Z).

Warning: Certificates MUST be in PEM format. When you store them within the module,

remember that at the end of each command-line only the <LF> character is needed

(without <CR>). Furthermore, be aware that some serial terminals add an undesired EOF

at the end of the certificate; in this case EOF must be removed before entering <ctrl>Z.

It is advisable to note that when using PEM format, the reserved chars “backspace”

and “escape" are interpreted as control characters and the corresponding action is

immediately executed.

Modules belonging to the HE910/UE910 families:

Note: in case of CA Certificate is already stored (for instance: SUPL), it could be possible to

avoid the using of the following command.

The command supports the operations of: writing, reading, and deleting. The command

syntax is:

AT#SSLSECDATA=<SSId>,<Action>,<DataType>[,<size>]

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available

<Action>: is the action to be performed

0 = deleting

1 = writing

2 = reading

<DataType>: is the certificate/key to be stored or read.

0 Certificate of the client (module). It is needed when the Server/Client authentication

mode has been configured.

1 CA Certificate of the remote server, it is used to authenticate the remote server. It is

needed when <auth_mode> parameter of the #SSLSECCFG command is set to 1.

2 RSA private key of the client (module). It is needed if the Server/Client

authentication mode has been configured.

Note: only PKCS#1 format is supported for HE910/UE910 families

<size> is the size of the stored security data.

Immediately after entering the command, the ‘>’ prompt is displayed. There are two entering

mode depending on the used certificate format. The format is configured via the

<cert_format> parameter of the #SSLSECCFG command:

PEM format: you enter the certificate to be stored and confirm its end with the 0x1A

character (<ctrl>Z).

Note: when PEM format is selected, the reserved chars “backspace” and “escape" are

interpreted as control characters and the corresponding action is immediately executed.

DER format: you enter the certificate to be stored. When <size> bytes are entered, the

security data is stored and an OK message is displayed.

Note: when DER format (file in binary format) is selected, the reserved chars “backspace”

and “escape" are not interpreted as control characters because the binary file could include

them inside it.

This chapter describes an example of procedure to get the CA certificate to be used in case of

a connection to an HTTPS server. During the handshake, the server sends a certificate chain,

in other words it sends a list of certificates. The chain begins with the certificate of the server,

and each certificate in the chain is signed by the entity identified by the next certificate in the

chain. The chain terminates with a root CA certificate. The root CA certificate is always

signed by the CA itself. The signatures of all certificates in the chain must be verified until the

root CA certificate is reached. Follow and example of Certificate Chain:

ServerCert -> AuthorityCert1 -> AuthorityCert2 … -> AuthorityCertN -> RootCACert

Where:

ServerCert: is the certificate of the server at which the user wants to connect to;

AuhorityCert1…N: are CA certificates of intermediate authorities;

RootCACert: is the certificate of a global recognized Certificate Authority.

Referring to the Certificate Chain example: each certificate of the chain (e.g. Cert1) is signed

by the authorities of the next certificate (on its right in the chain, e.g. Cert2), and so on up to

CertN. RootCACert is self-signed. The CA certificate to be stored in the Telit module in

order to perform the server authentication is the RootCACert.

If you need to be connected to an HTTPS server via a Telit module, first of all you must store

in the NVM of the module the relating Root CA Certificate to allow with successful result the

server authentication activity. To get the needed Root CA Certificate you can use, for

example, a browser connected to the desired HTTPS server as shown in the next pages. After

getting the Root CA Certificate, it can be stored in the module. In the following example is

used the browser Mozilla Firefox.

After being connected to the HTTPS server, click on the lock icon on the left side of the page

browser and the following screenshot is displayed.

Then click on “More Information” button. In the new window, see below, select the

“Security” tab, and click on “View Certificate” button.

Now, select “Detail” Tab, the following screenshot is displayed.

The screenshot above shows a “Certificate Hierarchy” section that contains the certificate

chain for the selected website. The Root CA Certificate is the first one, select it and click on

the “Export” button. The certificate is saved into a file in PEM format, now open the file via a

text editor, the following structure is displayed; see the example described in chapter 4.5.5:

-----BEGIN CERTIFICATE-----

………..

………..

………..

-----END CERTIFICATE-----

Note: the CA certificate obtained via the procedure described above may be different from

the one actually sent by the server during the handshake. In these cases, contact the server

administrator in order to obtain the CA certificate to be used.

Note: if you use a CA certificate that is expired, the Telit’s module (client) detects the

certificate expiration when it tries to perform the connection. An error message is displayed.

To emulate the behaviour of Telit’s modules that ignore this check, it is necessary to

disable automatic date/time updating using the AT#NITZ AT command and set current

date before expiry data using AT#CCLK AT command.

Before opening the SSL socket, several parameters can be configured via the following

command:

AT#SSLCFG=<SSId>,<cid>,<pktSize>,<maxTo>,<defTo>,<txTo>

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available

<cid>: is the PDP Context Identifier, its value must be set to 1, see chapter 2.1.1.

<pktSize>: is the size of the packet used by the SSL/TCP/IP stack for data sending in online

mode. The packet size can be changed according to the user’s application standard message

size. Small <pktSize> values introduce a higher communication overhead.

<maxTo>: is the socket inactivity timeout. In online mode: if there’s no data exchange within

this timeout period the connection is closed. Increment it if it is needed a longer idle time

period.

<defTo>: Timeout value used as default value by other SSL commands whenever their

Timeout parameters are not set.

<txTo>: is the time period after which data is sent even if <pktSize> is not reached (only in

online mode). The parameter value must be tuned with user’s application requirements. Small

<txTo> values introduce a higher communication overhead.

The next three chapters show examples concerning the configuration of the different

authentication modes and the relating certificates storage. Each Telit’s modules families have

dedicated examples.

This example is valid for all module families. The next command shows the SSL Verify None

mode setting. In this case no security data have to be stored in NVM, the module is ready for

SSL socket dial.

AT#SSLSECCFG=1,0,0

OK

In this example it is assumed to use modules belonging to the GC, GE/GL, or GT families,

and set up the TLS_RSA_WITH_RC4_128_MD5 cipher suite.

AT#SSLSECCFG=1,1,1

OK

AT#SSLSECDATA=1,1,1,<size>  store CA Certificate in PEM format

> -----BEGIN CERTIFICATE-----<LF>

[…]

-----END CERTIFICATE-----<LF>

<ctrl>Z

OK

Now the module is ready for SSL socket dial.

In the next examples it is assumed to use modules belonging to the HE910/UE910 families:

-- Example using DER format --

AT#SSLSECCFG=1,0,1,0  <cert_format> = 0, DER format is selected

OK

Note: if you don’t specify any <cert_format> with #SSLSECCFG, PEM is assumed as

default. But read command doesn’t show any value due to retro compatibility with other

platforms”

AT#SSLSECDATA=1,1,1,<size>  store CA Certificate in DER format

> …………………….  when <size> bytes are entered, the Certificate is stored and OK

message is displayed

OK

Now the module is ready for SSL socket dial.

-- Example using PEM format --

AT#SSLSECCFG=1,0,1,1  <cert_format> = 1, PEM format is selected

OK

AT#SSLSECDATA=1,1,1,<size>  store CA Certificate in PEM format

> -----BEGIN CERTIFICATE-----<LF>

[…]

-----END CERTIFICATE-----<LF>

<ctrl>Z

OK

Now the module is ready for SSL socket dial.

This example is valid for all module families. Using the server/client authentication mode you

need to store all the security data: Certificate, CA Certificate and private key.

For modules belonging to the GC, GE/GL, and GT families certificates have to be in PEM

format, for HE910/UE910 families both PEM and DER format are supported.

AT#SSLSECCFG=1,0,2  set Server/Client authentication mode

OK

Store all needed security data as follows:

AT#SSLSECDATA=1,1,0,<size>  store Certificate

> -----BEGIN CERTIFICATE-----<LF>

[…]

-----END CERTIFICATE-----<LF>

<ctrl>Z

OK

AT#SSLSECDATA=1,1,1,<size>  store CA Certificate

> -----BEGIN CERTIFICATE-----<LF>

[…]

-----END CERTIFICATE-----<LF>

<ctrl>Z

OK

AT#SSLSECDATA=1,1,2,<size>  store RSA private key

[… private key …]

<ctrl>Z

OK

Now the module is ready for SSL socket dial.

This section describes the command that allow the user to open an SSL socket and exchange

data using it. There are two data exchange modes:

 online mode

 command mode

After the AT commands introduction, some examples are illustrated.

Warning: the Telit’s GC, GE/GL, and GT modules families have a maximum SSL record

size = 15800 bytes. This limits to 15800
4

 bytes the maximum size of a web page

downloadable from a HTTPS server (except when the server itself divides the page in

smaller chunks).

An SSL socket can be opened using the following command:

AT#SSLD=<SSId>,<remotePort>,<remoteHost>,<closureType>,<mode>[,<timeout>]

Where:

<SSId> : must be set to 1. It is the only Secure Socket ID available

<remotePort>: is the remote port of the SSL server (usually 443)

<remoteHost>: is the IP/hostname of the SSL server.

<closureType>: enable/disable the capability to restore later the session without repeating the

handshake phase using the #SSLFASTD command. This parameter can be set only to 0 for

the modules belonging to the HE910/UE910 families.

<mode>: is the data exchange mode:

0 = online mode: the response message CONNECT is shown on success and from

that moment all bytes sent to the serial port are treated as data.

1 = command mode: the response message OK is shown on success. After that,

AT interpreter is still alive, and data can be exchanged by means

of AT#SSLSEND and AT#SSLRECV commands.

If for any reason the handshake fails (network or remote server overload, wrong certificate,

timeout expiration etcetera) an ERROR response message is displayed.

<timeout>: is the timeout of the TCP socket on which the handshake message will be sent.

Refer to the following table to see how to manage the timeout expiration:

After the CONNECT message, the user can send data to the module. Data is encrypted and

sent to the server through the secure socket as soon as the packet size has been reached or the

txTo timeout expires, see chapter 3.4 to configure these parameters.

In online mode the user cannot run AT commands on the used serial port or virtual port, refer

to [4] or [5] to have detailed information about the serial/virtual ports. Anyway, it is possible

suspend the connection (without closing it) by sending the escape sequence (+++). After that,

the module returns the OK response and is able to parse AT commands again.

Data mode can be restored at any time by sending the following command:

AT#SSLO=<SSId>

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available.

After the #SSLO restore command, the CONNECT message is displayed, and SSL

communication can continue.

If the idle inactivity timeout expires (<maxTo>, see paragraph chapter 3.4) or the remote

server forces the connection closure, the NO CARRIER message is displayed.

In command mode data can be exchanged through an SSL socket by means of the

AT#SSLSEND and AT#SSLRECV commands. The data exchange is performed in blocking

mode.

Note: at any moment the user can switch to online mode by sending the AT#SSLO

command (described in the previous paragraph).

Use the following command to send data:

AT#SSLSEND=<SSId>[,<Timeout>]

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available.

<Timeout>: is the maximum blocking timeout. It can be omitted, and in this case the default

timeout set via AT#SSLCFG will be used (<defTo>, refer to chapter 3.4).

After the ‘>’ prompt the data to be sent can be entered. To complete the operation send

<ctrl>Z, then the data is forwarded through the secure socket.

Response:

OK on success

ERROR on failure

Use the following command to receive data:

AT#SSLRECV=<SSId>,<MaxNumByte>[,<Timeout>]

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available.

<MaxNumByte>: is the maximum number of bytes that will be read from socket. The user

can set it according to the expected amount of data.

<Timeout>: is the maximum blocking timeout. It can be omitted, and in this case the default

timeout set via AT#SSLCFG will be used (<defTo>, refer to chapter 3.4).

On success, the data is displayed in the following format:

#SSLRECV: <numBytesRead>

… received data ….

OK

Where:

<numBytesRead> is the number of bytes actually read (equal or less than <MaxNumBytes>.

If the timeout expires, the module displays the following response

#SSLRECV: 0

TIMEOUT

OK

The ERROR message is displayed on failure.

The SSL socket can be closed by means of the following command:

AT#SSLH=<SSId>,<closureType>

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available

<closureType>: enable/disable the capability to restore later the session without repeating the

handshake phase using the #SSLFASTD command. This parameter can be set only to 0 for

the modules belonging to the HE910/UE910 families.

If the socket has been opened in online mode, the user needs to send the escape sequence

(+++) before closing it with #SSLH, unless the communication is remotely closed or the idle

inactivity timeout expires (NO CARRIER message).

If the socket has been opened in command mode, when communication is remotely closed

and all data have been retrieved (#SSLRECV), you can close on client side also and NO

CARRIER message is displayed.

At any moment, it is also possible to close the socket on client side by means of AT#SSLH.

The restore of a previous session avoids full handshake and performs a fast dial, which saves

time and reduces the TCP payload.

The restoring is accomplished by means of the AT#SSLFASTD command, which can be used

if #SSLD or #SSLH command have been entered with <closureType> parameter set to =1,

refer to chapters 4.1 and 4.3 respectively. In this case, the previous data security is not deleted

on socket closure.

 Warning: this command is not provided by the HE910/UE910 families

The syntax of the command is:

AT#SSLFASTD=<SSId>,<connMode>,<Timeout>

Where:

<SSId>: must be set to 1. It is the only Secure Socket ID available

<connMode>: is the data exchange mode (0 = online mode, 1 = command mode).

<Timeout>: is the maximum blocking timeout. It can be omitted, and in this case the default

timeout set via AT#SSLCFG will be used (<defTo>, refer to chapter 3.4).

In the next sub-sections are described examples concerning the AT commands introduced in

the previous chapters.

In the following example it is assumed that the socket is opened and connected to the IP

123.124.125.126, where there’s an SSL server listening at port 443. After data exchange the

connection is suspended, the AT#SSLS command is entered to check the SSL status, and then

the data mode is restored using AT#SSLO command. At the end the SSL socket is closed.

Moreover, suppose that the PDP context activation, SSL socket enabling, and SSL socket

security configuration are already performed.

Modules belonging to the GC, GE/GL, GT, and HE910/UE910 families:

AT#SSLD=1,443,”123.124.125.126”,0,0  Open the SSL socket in on line mode

CONNECT

..

[bidirectional data exchange]

..

[send +++]  Suspend the connection

OK

AT#SSLS=1  Query the status of the Secure Socket Id = 1

#SSLS: 1,2,<cipher_suite>  the connection is open

OK

AT#SSLO=1  Restore the connection

CONNECT

..

[bidirectional data exchange]

..

[send +++]  Suspend again the connection

OK

AT#SSLH=1  Close SSL socket

OK

AT#SSLS=1  Query the status of the Secure Socket Id = 1

#SSLS: 1,1  the connection is closed

OK

In the following example it is assumed that the socket is opened and connected to the IP

123.124.125.126, where there’s an SSL server listening at port 443. The data exchange is

performed via #SSLSEND and #SSLRECV commands. At the end the SSL socket is closed.

Moreover, suppose that the PDP context activation, SSL socket enabling, and SSL socket

security configuration are already performed.

Modules belonging to the GC, GE/GL, GT, and HE910/UE910 families:

AT#SSLD=1,443,”123.124.125.126”,0,1  Open the SSL socket in command mode

OK

AT#SSLS=1  Query the status of the Secure Socket Id = 1

#SSLS: 1,2,<cipher_suite>  the connection is open

OK

AT#SSLSEND=1  Sending data

> Send this string to the SSL server!<ctrl>Z

OK

AT#SSLRECV=1,15  Receiving data

#SSLRECV: 0

TIMEOUT  The server has not sent a response within the timeout

OK

AT#SSLRECV=1,15

#SSLRECV: 15

Response of the  Received data

OK

AT#SSLRECV=1,15

#SSLRECV: 6

server!  Received data

OK

“Response of the server!” is the string sent by the server

AT#SSLH=1  Close SSL socket

OK

Note: if remote server closes data communication at the end of its data sending and no

more data are available to be retrieved, communication is closed on client side also. NO

CARRIER message is displayed, and then no #SSLH is needed.

In the following example it is assumed that the socket is opened and connected to the IP

123.124.125.126, where there’s an SSL server listening at port 443. After data exchange in

online mode the connection is suspended and is entered the command mode. In the command

mode the AT interface is active and by means of the #SSLSEND and #SSLRECV commands

it is possible to continue to receive and send data using the SSL socket that is still connected.

At the end the SSL socket is closed. Moreover, suppose that the PDP context activation, SSL

socket enabling, and SSL socket security configuration are already performed.

Modules belonging to the GC, GE/GL, GT, and HE910/UE910 families:

AT#SSLD=1,443,”123.124.125.126”,0,0  Open the SSL socket in Online Mode

CONNECT

..

[bidirectional data exchange]

..

[send +++]  Suspend the connection and enter into Command Mode

OK

AT#SSLS=1  Query the status of the Secure Socket Id = 1
#SSLS: 1,2,<cipher_suite>  The connection is open

OK

AT#SSLSEND=1  AT interface is still active. Send data in Command Mode

> Send data in command mode!<ctrl>Z

OK

AT#SSLRECV=1,100  AT interface is still active. Receive data in Command Mode

#SSLRECV: 24

Response in command mode

OK

AT#SSLH=1  Close SSL socket

OK

Note: if remote server closes data communication at the end of its data sending and no

more data are available to be retrieved, communication is closed on client side also. NO

CARRIER message is displayed, and then no #SSLH is needed.

In the following example it is assumed that the socket is opened and connected to the IP

123.124.125.126, where there’s an SSL server listening at port 443; in addition suppose that

the <closureType> parameter is set to 1. Data exchange is performed in online mode, and

then the socket is closed and reopened via #SSLFASTD command. After a new data

exchange the socket is closed definitively. Moreover, suppose that the PDP context activation,

SSL socket enabling, and SSL socket security configuration are already performed.

Modules belonging to the GC, GE/GL, and GT families:

AT#SSLD=1,443,”123.124.125.126”,1,0  Open the SSL socket in Online Mode

CONNECT

..

[bidirectional data exchange]

..

[send +++]  Suspend the connection and enter into Command Mode

OK

AT#SSLH=1  Close SSL socket

OK

 Warning: HE910/UE910 families do not support #SSLFASTD command.

AT#SSLFASTD=1,0  Restore the session in Online Mode

..

[bidirectional data exchange]

..

[send +++]  Suspend the connection

OK

AT#SSLH=1,0  Force definitive closure

OK

Referring to the example illustrated in chapter 3.3.1: it is assumed that you have got the CA

Certificate. Moreover, suppose that the PDP context activation and SSL socket enabling are

already performed.

The following SSL commands perform: the configuration of the SSL socket in server

authentication mode, the storing of the CA certificate, the opening of the socket and starting

of the data exchange. After that, the HTTPS server responds to the module and closes the

socket.

AT#SSLSECCFG=1,0,1  Set Server Authentication Mode

OK

AT#SSLSECDATA=1,1,1,1760  Store the CA Certificate
> -----BEGIN CERTIFICATE-----

………..

Write the certificate got by using the procedure describe in chapter 3.3.1

……….

-----END CERTIFICATE-----

<ctrl>Z

OK

AT#SSLD=1,443,”www.---“,0,0  Open the SSL socket in Online Mode

CONNECT

……

The module receives from the HTTPS server a response

……

NO CARRIER  Server remote closure: some servers are configured in order to close

the socket after a single request.

FTPS is useful when an application needs to connect securely using FTP. As described in

RFC 4217, FTPS permits authentication, integrity and confidentiality during an FTP

connection over a SSL/TLS secure socket. The Telit’s modules support the explicit mode, as

described in RFC 4217, in this mode the FTPS client must explicitly request security from an

FTPS server (implicit mode is a deprecated). When FTPS connection is opened towards an

FTPS server, FTP command AUTH (refer to RFC2228, and RFC4217) is sent to the server to

explicitly request a secure FTP connection.

To enable an FTPS connection it is necessary to follow the steps below:

 Use the AT#FTPCFG command to enable FTPS security.

 Use AT#SSLSECCFG and AT #SSLSECDATA commands to configure the SSL, see

chapters 3.2 and 3.3.

As usual, use the FTP commands to open control connection and data connection. When

#FTPOPEN is used, FTPS connection is opened toward the FTPS server. Any subsequent

data port opening (#FTPLIST, #FTPGET, #FTPPUT, …) will be in protected mode.

No TLS session reuse is performed when data connection is opened: two TLS sessions are

performed within an FTP session, one for control and one for data port. Server shall be

configured so that TLS reuse is not required.

The same certificates saved via #SSLSECDATA command are used for both TLS sessions, as

strongly recommended by RFC 4217.

Example for modules belonging to the GC, GE/GL, GT, and HE910/UE910 families

AT#FTPCFG=<tout>,<IPPignoring>,1  Enable the FTPS security

OK

AT#SSLSECCFG=1,0,1  Set Server Authentication Mode

OK

AT#SSLSECDATA=1,1,1,1159  store CA Certificate6

> -----BEGIN CERTIFICATE-----

[…]

 -----END CERTIFICATE-----

<ctrl>Z

OK

GC, GE/GL, and GT families support PEM format;

HE910/UE910 families support PEM and DER formats.

Enter #FTPOPEN command to perform the following actions: send toward the FTPS server

the AUTH TLS command to use the explicit TLS mode. When TLS handshake is performed

and secure connection is established, the <username> and <password> are sent.

AT#FTPOPEN=<server:port>,<username>,<password>[,<mode>]

OK

Now, FTP control connection is secured via TLS protocol

AT#FTPGET=”file.txt”  Get the file from the FTP server

CONNECT
Now, the data port is connected and the TLS handshake is performed, FTP data connection is secured via TLS

protocol and the file.txt downloading is started.

…….

…….

…….

NO CARRIER

AT#FTPCLOSE  Close the FTPS connection

OK

In this example server authentication and cipher suite 0 have been considered. See chapters

3.2, and 3.3 for other available configurations.

Note: GC, GE/GL, and GT families support PEM format. HE910/UE910 families support

PEM and DER formats.

Telit’s modules provide the AT+CMEE command to enable/disable the error report. The error report can

assume two formats: numerical and verbose. The table below summarizes the error reports generated by the

SSL AT commands in accordance with the selected format.

830 SSL generic error
831 SSL cannot activate
832 SSL socket error
833 SSL not connected
834 SSL already connected
835 SSL already activated
836 SSL not activated
837 SSL certs and keys wrong or not stored
838 SSL error enc/dec data
839 SSL error during handshake
840 SSL disconnected

Revision Date
Product/

SW Version
Changes

0 2011-10-11

/

First issue

1 / /

2 2012-11-07

Added GE910 module and HE910 family modules. The

document has been updated in accordance with the added

modules.

3 2012-12-14 Added notes in chapters 3.2, and 3.3.1

4 2013-03-15

Modified figures in chapter 3.3.1.

Added note in chapter 3.3.

Added explanation for HE910 of:

new values 1 to 4 available of #SSLSECCFG param

<cipher_suite>,

new value 0 available of #SSLSECCFG param

<auth_mode>,

Updated Applicability Table: added GL865-DUAL V3,

GL868-DUAL V3 and updated software versions.

5 2013-05-02

Update for HE910: client authentication support,

FTP over TLS support.

Enhancements regarding FTP over TLS for all families.

6 2013-09-13

GE910-GNSS/13.00.xx4

GL865-QUAD V3/16.00xx3

GE910-QUAD V3/16.00.xx3

UE910/12.00.004

In the Applicability Table have been added the products

shown on the left side: first issue.

CA Certification Authority

DER Distinguished Encoding Rules

FTPS File Transfer Protocol Secure

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

HTTPS Hyper Text Transfer Protocol over Secure Socket Layer

ISP Internet Service Provider

NVM Non Volatile Memory

PDP Packet Data Protocol

PEM Privacy Enhanced Mail

RSA Stands for the first letter of the names of the algorithm designers

SSL Secure Socket Layer

SUPL Secure User Plane Location

TLS Transport Layer Security

