/
® .
Iell wurel_ess
solutions

HE910 Easy Script in Python

80378ST10106A Rev.0 - 2012-02-27

Making machines talk.

wireless
solutions

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

APPLICABILITY TABLE

From SW Versions:

12.00.xx2

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 2 of 74

Mod. 0809 2011-07 Rev.2

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Notice

While reasonable efforts have been made to assure the accuracy of this document, Telit
assumes no liability resulting from any inaccuracies or omissions in this document, or from
use of the information obtained herein. The information in this document has been carefully
checked and is believed to be entirely reliable. However, no responsibility is assumed for
inaccuracies or omissions. Telit reserves the right to make changes to any products described
herein and reserves the right to revise this document and to make changes from time to time
in content hereof with no obligation to notify any person of revisions or changes. Telit does
not assume any liability arising out of the application or use of any product, software, or
circuit described herein; neither does it convey license under its patent rights or the rights of
others.

It is possible that this publication may contain references to, or information about Telit
products (machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that Telit intends to
announce such Telit products, programming, or services in your country.

Copyrights

This instruction manual and the Telit products described in this instruction manual may be,
include or describe copyrighted Telit material, such as computer programs stored in
semiconductor memories or other media. Laws in the Italy and other countries preserve for
Telit and its licensors certain exclusive rights for copyrighted material, including the
exclusive right to copy, reproduce in any form, distribute and make derivative works of the
copyrighted material. Accordingly, any copyrighted material of Telit and its licensors
contained herein or in the Telit products described in this instruction manual may not be
copied, reproduced, distributed, merged or modified in any manner without the express
written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed
to grant either directly or by implication, estoppel, or otherwise, any license under the
copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a
product.

Computer Software Copyrights

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual
may include copyrighted Telit and other 3rd Party supplied computer programs stored in
semiconductor memories or other media. Laws in the Italy and other countries preserve for
Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer
programs, including the exclusive right to copy or reproduce in any form the copyrighted
computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW
computer programs contained in the Telit products described in this instruction manual may
not be copied (reverse engineered) or reproduced in any manner without the express written
permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products
shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any
license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied
SW, except for the normal non-exclusive, royalty free license to use that arises by operation
of law in the sale of a product.

1 'ﬁlw ’r—!
A

, "

Reproductlon forbidden without written authorization from Telit Commumcatlons S.p.A. - All Rights Reserved. Page 3 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Usage and Disclosure Restrictions

License Agreements

The software described in this document is the property of Telit and its licensors. It is
furnished by express license agreement only and may be used only in accordance with the
terms of such an agreement.

Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is
prohibited by law. No part of the software or documentation may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or computer language,
in any form or by any means, without prior written permission of Telit

High Risk Materials

Components, units, or third-party products used in the product described herein are NOT
fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control
equipment in the following hazardous environments requiring fail-safe controls: the operation
of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic
Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s)
specifically disclaim any expressed or implied warranty of fitness for such High Risk
Activities.

Trademarks
TELIT and the Stylized T Logo are registered in Trademark Office. All other product or
service names are the property of their respective owners.

Copyright © Telit Communications S.p.A.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 4 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Contents
IR 14 oo 18 Tod £ o] o ISR OR PRSPPI 10
O S Voo oL PRSP PPT PR 10
O U [[1= o o PSP ST 10
1.3. Contact INformation, SUPPOIT........c.coiiiieicie e e e ae e ns 10
1.4, DOCUMENT OFJANIZALIONcuviivieiieieitieitee ettt ste et esbe e te s sbeetesseesaeebesreenes 11
1.5, TEXE CONVENTIONS ..ottt bbbt b ettt e ettt bbb s 11
1.6. Related DOCUMENTScoiuiiiiiiieitieiesie sttt sttt sttt et sne e b e e te b e sbeenbeereenns 11
2. Easy Script Extension - Python iNtErPreter ..o oo 12
N R @Y= VT PR PRR 12
2.2. Python 2.7.2 Copyright NOICE.c.ccieiiee et 14
P T Y/ 1 1T FO SRR 14
2.4. Python implementation deSCriPtiON........c.ccviieiieiriii e 14
2.5. Python SUPPOIEA TEALUIESccveeiieiiciie ettt ettt 16
K T V7 1 Lo g IS To] T o @] 1T =[] 1SS 17
3.1, Executing the PYTNON SCIIPL.......ooiiiiiieiiee ettt 17
311 Write the PYINON SCIIPLeoiiieiciece sttt st re e e ne e 17
3.1.2. Compile the PYthON SCIIPL.......ccviiiiici ettt ne e 17
3.1.3. Download the PYTNON SCIIPL.......cviiiiiiieieceee s 17
3.1.4. Enable the PYthOn SCIIPLcoooviiiiiiiiei e 20
3.1.5. RUNThE PYNON SCIIPL.....iiiiceiccece ettt st sae b be e e saesreenaenre s 21
3.1.6. Read the PYthOn SCrIPLcciiiiiiiiiii 21
3.1.7. LISt SAVEA PYNON SCIIPLS. ...cuviiiiieie ittt ettt et ste et e e neenaesre s 22
3.1.8. Delete the PYtNON SCIPLccooiiiiiiiiei e 22
T B 1= o[0Tl oY1 T TR] o] PSPPI 23
4. Python Build-in CuStom MOGUIES............coiiiiiiiicce e 24
4.1, MDM BUHE-IN MOAUIE ... et 24
4.1.1. MDM.send(String, IMEOUL)c.cciiieiieiecie et te st ste e re e aeste e e bestaeseesreenaesaennes 24
£.1.2. MDIMLIEAA() covvvoveeoeeeeeeeeseeeseeeesees e eessses st es s snes s s sns s en s es s enss s en s snssen s 25
4.1.3. MDM.sendbyte(Dyte, tIMEOUL).........ccuririireieieieere e 25
414, IMDIM.TEAADYLE() . .eveeereeeeeieieie ettt bttt 26
415, MDM.SENAAVAII() .. .ecvieieiiieieit ittt et sreere b nre s 26
416, MDM.GEIDCD().....oveeeeeeeeeeeeeeeeeeeeeee e se et e st ee et ss et 26

B.0.7. MDIVLGEICTS() oeeeeeeeeeeeereeseeeeeeeeeeeeesssseeesesesaseseeeseeeesseeeeseeseseeessseeeeeeesseeeeseseeeseeseeeeseseeesree 27

7 i

*‘M

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

4.1.8. IVIDIMLOEIDSR() «eveveieiteieieieieiese sttt sttt b bbbttt bbbttt bbb 27
419, IMDIMLOEIRI() ..ottt bbbttt 27
4.1.10. MDM.SEIRTS(RTS_VAIUL) ..c.ecuieiiiiieiiiiisiesieieie ettt be st e neenes 27
4.1.11. MNMDM.SEIDTR(DTR_VAIUE)ceiiiietiiiieieiieieieieie sttt asessessenaeseeeenes 28
4.2, MDM2 BUIlt=-IN MOUUIE ..o 29
42.1. MDM2.5end(String, tIMEOUL)ccooiiiriiriiitiiei et 29
O \V/ | 1Y b 7= Vo [OSSP 30
4.2.3. MDM2.sendbyte(byte, tIMEOUL)........oiiiiiieeieeee s 30
O S V| 1V = To [o) (=T) I USSP 31
4.25. MDM2.SENUAVAII() ...cveiiiivieriiieie ettt ettt et sbe st et e te et e ereeaenre s 31
G T \V/ | DY o= {1 I SO SR 31
O B \V | B Y o= (O (OSSO SSS 31
S T |V | Y o= D 1S OSSPSR 32
42,9, IMDMZ2.GEIRI() teveteieieietiee ettt bbbttt bbbt 32
4.2.10. MDM2.SEtRTS(RTS _VAIUE) ...c.eeiveciiicieciiee sttt st sae e ne e 32
4.211. MDM2.SetDTR(DTR _VAIUE)eiuiiiieiieiieieeecie ettt sttt ene e 32
4.3, SER DUIHE-IN MOAUIB.......oeiee et e 34
O N S = Y= o o [(] 1 [0) IS OSPSSSI 34
B o B - Lo [TSSO 34
4.3.3. SER.SENUDYLE(DYLE).....ctiieiiieieiiiiit sttt 35
4,34, SER.TEAUDYLE() .. e iueireeiteieieieiee ettt bbb s 35
4.3.5. SER.SENAAVAII()....cuiiieiiiieeiict ittt ettt et re e ra e nre s 35
4.3.6. SER.set_speed(speed, <Char fOrMAat>)cccoiiiiiiiiiieii e 36
4.3.7. SER.SEtDCD(DCD _ValUR)......coviiiiiiiiiiiieiieiieieeee sttt te ettt reasesbessenaeseeneans 36
4.3.8. SER.SEICTS(CTS _VAIUB) ...eeieiieiiiieie ettt sttt nne et ens 36
4.3.9. SER.SEtDSR(DSR_VAIUE)c.cciiiiiieieieieieesie sttt sttt sse st sresae e neeneens 37
4.3.10. SER.SEIRI(RI_VAIUR).......oitiitieie sttt sttt te e ste e stesaeeseesrs 37
4,311, SERLGEIRTS() eeveeuiitiitiiteitesieieie sttt sttt sb bbbttt bbbttt ettt b et 37
4.3.12. SER.QEIDTR() . eeeuteeiterieiierieieeeeseetestestesteseeseeseesessessessessesseeeseeseasessessessessesseseesensessessessessesenes 38
4.4, GPIO BUHE-IN MOUUIE......eeiiiee et 39
4.4.1. GPIO.setlOvalue(GPIONUMDEF, VAIUE)c.civeiieeiiiiieie sttt 39
4.4.2. GPIO.getlOValue(GPIONUMDEN)ceiieiie ettt sttt ae e nne s 39
4.4.3. GPI10.setlOdir(GP1Onumber, value, direCtioN)ccccveiiriiieie e 40
444, GPIO.getlOdir(GPIONUMDET)......ciiiiiiiteieeeeee s 40
4.45. GPIO.getADC(AJCNUMDEL) ... cciiiiii ettt sae st e e nae s 40
4.4.6. GPIO.setDAC(ENADLIE, VAIUE).......ccueiviiie ettt sttt nre s 41
4.4.7. GPIO.setVAUX(VauXNUumber, €nable)cccoovoiiiiiieiecece e 41
S R €1 o (@ 1 1=1 720 = TSSO 41
449, GPI10O.setSLED(status, onDuration, OffDUFAtioN)cooiiieiiiiee e 42

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 6 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

o O S €1 o (@ 1= (01 = 61§ OO PRV 42
4.5, GPS DUIE-IN MOTUIE......c.eiiiiiei e 43
451 GPS.pOWErONOFF(NEWSLALUS)eiueieieitiireieieiieesi sttt 43
4.5.2. GPS.getPOWEIONOFI() ..viiiiiiiiiic ettt st te e e raenaenne s 43
4.5.3. GPS.getACtUAIPOSITION() ...ecvviiiiicii ittt sttt et e st e e e reeaenre s 43
454, GPS.QEILASIGGA() -uereeitiieieiieiestete ettt bbbt bbbt b ettt 44
455, GPS.QEILASIGLL) ..euviveeitiieie ettt bttt 44
A4.5.6. GPS.QEILASIGSA() .. eueteueitiieieiietisiete ettt ettt ettt bbbttt 44
O S €1 S 1= | I S (€LY (PSR SSPSSN 45
R T €1 W0 < - {41V [ISR 45
459, GPS.QEILASIVTG() e veueeeririeieiieiisieest ettt bbbt b et b bbb 45
5. Python standard fUNCTIONS............ooiiiiiiiiei e e 46
5.1, Technical CharaCteriStICScuiiiiiiiieie ettt bbb eneas 46
TN S =T o= - PSS 46
5.2, Python SUPPOIEA TEALUIESc.eeieieiiciie ettt bbbt 47
5.2.1. Operators, statements, TUNCLIONSc.cccviiieiiiicie e 47
5.2.2. BUITE-IN FUNCLIONS ...ttt ettt et st enteste e neeenen 48
5.2.3. BUITE-IN CONSLANTS ...ttt e s te et e e sreeseesbesneeseesneaneeseeenes 49
5.24. Truth ValUE TESHING ...coveieeie ettt sttt sttt e te e s aesreenbesaeeneenre e 50
I T = T To] (- oI @ o 1=T - £ 0] LSS 50
ST TR O] 141 o - T (10 LSS 50
5.2.7. Numeric Types: Integer, Long Integer and Floating Pointccocooeiiiiininiineeee 50
5.2.8. Numeric Types: Integer and LONG INTEGETcviiriieriiieieisese s 51
5.2.9. Numeric Types: FI0ating POINt...........ccoiiiiiie i 51
5.2.10. NUMEIIC TYPES: COMPIEX ...viiviiiiiiieiii ettt sttt s be et ste e e e ste e e e besteesaesteanaenrens 51
ST B 1 (=T (] g I8/ 1T TP PP PP PROP VRPN 51
5.2.12. GBNEIALION TYPES .ueiteereeresreesre et et st sttt e e r e s r st e r e e R e e e sr e eb e r e s R esn e r e s ne e nenre e e nreareene s 51
5.2.13. Sequence Types: String, List, Tuple, Bytearray, Buffer and Xrange............cccccoovvvninincnennenn. 51
5.2.14. Sequence TYPES: UNICOUEcciiiiiieiiiiiie sttt sttt sttt be e aesne e 52
5.2.15. SEQUENCE TYPES: SEIING....eiiiiitieieiieie ettt ettt ettt e e ste et a et e te e e e srestaenbesbeasaesbesneennenreans 52
5.2.16. Mutable Sequence Types: List and BYLEAITAYcccorvereeiiiirinineiesceeeeees s 53
5.2.17. Set Types: Set and FrOZENSELooveiiiiiiiciieee e 54
5.2.18. Mapping TYPES: DICIONAIYc.ooeiiiririiieieeieieiee sttt 55
oI R TR 1 [T @ o] =Tt SO PS 55
5.2.20. MEeEMOIYVIEW ODJECESueiieiiiiiieie sttt sttt te et te st et e teenbesresre e besaeeneenne e 56
5.2.21. MOUUIE OBJECEScviiirieieiieieie sttt bbbttt b 56
5.2.22. Classes and Class INSTANCESccueiiiieiiieeie sttt sttt ste et ste e e sbesneeseesaeeneeneeas 56
5.2.23. FUNCHION ODJECES ...t 57
I R |V 1= 1 o I @ o =Tt £ PUSSRPPSRSN 57

.._'*AEE . " / E Ll | - y | 8

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 7 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

I T O To 3o o T £ PSPI 57
IV T Y/ o 1= @] o] 1= -SSRSO 57
oI A R [T O o] =T SRS 57
5.2.28. EHIPSIS ODJECT.....eieeecicee s 57
5.2.29. NOtIMPIEMENIEA ODJECL.......civiiieieie et re e besreenee e 57
5.2.30. Internal Types: Frame ODJECLS.......cciiiiiiiiie et st re e 57
5.2.31. Internal Types: Traceback ODJECES........cciiiiieiiiiiie st 57
5.2.32. SHCE ODJECLS ...veeireeiteeee ettt et bbbt r e 57
5.2.33. BUI-IN EXCEPLIONSvviiiieieiiiisse et 58
5.2.34. Built-in Modules: Marshal ..o s 58
5.2.35. BUI-IN IMOAUIES: IMP..eiiiiiiicieie ettt ettt sbe e e e besreesaesreenaenreas 59
5.2.36. BUII-IN IMOAUIES: _SL.......iiiieiiiiiiie ettt sttt re et te e e besteesaesreenae e 59
5.2.37. BUIlt-IN MOAUIES: _ MAIN__ oottt eeseeenee e 59
5.2.38. Built-in Modules: _ BUIITIN__ ..o 59
5.2.39. BUI-IN IMOTUIES: SYS .. uviiiiiieiiiiieiie ittt sttt sttt sttt ste st et e sbe s e besneesbesteanaesreaneennens 60
5.2.40. BUIlt-in MOAUIES: EXCEPLIONSviivieiiiieiie ettt sttt sre et re e srearae e 61
5.2.41. BUIlt-IN MOGUIES: GC ...ttt 61
5.2.42. BuUilt-In MOAUIES: _WAIMINGScoveiiieitiieieieieese e 62
5.2.43. BUIlt-INn MOAUIES: _MAS ...ttt st neesneens 62
5.2.44. BuUilt-In MOAUIES: DINASCH......ccviiiiiiiiiieiieieiesse et 62
5.2.45. BUII-IN IMOGUIES: K@ ..ottt sttt e st e te e beeneentenre e 62
5.2.46. BuUilt-in MOAUIES: _WEAKIEToieiiiiiiiee et 62
5.2.47. Built-in Modules: _SYmMEabIe...........ooiiiiiii s 62
5.2.48. Built-in Modules: _fUNCLOOIScooiiiiieie e 62
5.2.49. BUilt-in MOAUIES: SOCKEL.......ccviiiiiiciiiiie ettt st sre et e e sne e 63
5.2.50. BUIlt-IN MOGUIES: TIMEeiiiiiiiiiitiiie ettt 65
5.2.51. BuUIlt-IN MOGUIES: POSIXviiviiiiiiiiieieieeee et 66
5.2.52. BUilt-In MOAUIES: ThI AToeiieeieeeee e 66
5.2.53. BuUilt-In MOAUIES: SIGNAL.........coiiiiiiiiee s 67
5.2.54. BUIlt-IN MOGUIES: BITNO.......iiiiiiiiiiiieieieiees bbbttt enes 67
5.2.55. Built-in Modules: CSIHNGIOcoviiiciie e s 67
5.2.56. LIDIary MOGUIES..........oouiiiieieiee ettt 68
6. Python non standard FUNCLIONSooiiiiiiiiie e e 69
6.1. _socket non standard FUNCLIONSocviiiiiiii it srre e 69
6.1.1. Non standard socket option flag: SO_CONTEXTID.......cccceiiiiiiiiiiieiciceeesee s 69
6.2. signal Non standard FUNCLIONS...........coiiiiiie i 70
6.2.1. Nonstandard signal: SIGIMDMcccciiiiiiiiiieie e 70
6.2.2. Non standard signal: SIGIMDIMZ ..o s 70

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 8 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

T PYENON NOTES ...ttt b et s e b e bt be et e et e re e sbeenbenneenes 71
7% S |V 1= o o YA 4 USSR 71
A © 1 0 T=] ol 1 1| PP PRRS 71

8. Python Script EMUIAtion 0N PC.......cuiiiiiice et 72
8.1. Executing the Python SCrIPt ON PC.......ooiiiiiiiiee e 72

8.1.1. INSEAIT PYENON ..ottt ettt e e s et eare et e ste e e nreenee 72
8.1.2. Install optional serial PACKAGE..........ccveiiiiii e 72
8.1.3. CopYy PYtNON MOUUIESoiiiiiiiciee e 72
8.1.4. RUNthe PYLhON SCIIPL. ..ot 73
e I o To U [o T=T o | A 1] 0] SR 74

= : e - - = - >~ 2 S .

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 9 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

1. Introduction

1.1 Scope

Aim of this document is to give an overview of the Easy Script Extension feature, which lets
the developer to drive the modem internally, writing the controlling application directly in a
high level language such as Python.

1.2. Audience
This document is intended for Telit customers developing functionalities on their
applications.

1.3. Contact Information, Support

For general contact, technical support, to report documentation errors and to order manuals,
contact Telit Technical Support Center (TTSC) at:

TS-EMEA@telit.com
TS-NORTHAMERICA@telit.com
TS-LATINAMERICA@telit.com
TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/en/products/technical-support-center/contact.php

For detailed information about where you can buy the Telit modules or for recommendations
on accessories and components Visit:

http://www.telit.com

To register for product news and announcements or for product questions contact Telit
Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and
suggestions for improvements.

Telit appreciates feedback from the users of our information.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 10 of 74

mailto:TS-EMEA@telit.com�
mailto:TS-NORTHAMERICA@telit.com�
mailto:TS-LATINAMERICA@telit.com�
mailto:TS-APAC@telit.com�
http://www.telit.com/en/products/technical-support-center/contact.php�
http://www.telit.com/�

1.4.

1.5.

1.6.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Document Organization
This document contains the following chapters:

Chapter 1: “Introduction” provides a scope for this document, target audience, contact and
support information, and text conventions.

Chapter 2: “Easy Script Extension — Python interpreter” gives a broad overview about the
extension.

Chapter 3: “Python script operations” deals with the execution of the scripts operatively.

Chapter 4: “Python built-in custom modules” explains in detail the single custom built-in
modules.

Chapter 5: “Python standard functions” provides a description of Python language supported
features.

Chapter 6: “Python non standard functions” provides a description of non standard functions
added to Python language.

Chapter 7: “Python notes” deals with some Python limits that should be considered while
developing scripts.

Text Conventions

Danger — This information MUST be followed or catastrophic equipment failure or bodily
injury may occur.

Caution or Warning — Alerts the user to important points about integrating the module, if
these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information — Provides advice and suggestions that may be useful when
integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

Related Documents
e HE910 AT Commands Reference Guide, 80378ST10091A
e HE Family Ports Arrangements User Guide, 1vv0300971

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 11 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

2. Easy Script Extension - Python interpreter

2.1. Overview

The Easy Script Extension is a feature that allows driving the modem internally, writing the
controlling application directly in the Python high level language. A typical application
usually consists of a microcontroller managing data transfer and several 1/O pins on the
module through the AT command interface.

A schematic of such a configuration can be the following:

FLASH ROM RAM
PHYSICAL AT SEF

ATcommands }_"_.‘-,j'JJ [or
/306G
IJJ.JJ-—'IJJ
Protocol Stacks

INeMory:

HARDWARE RESOURCES

Reproduction forbldden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 12 of 74

lelit
HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

The Easy Script Extension functionality lets the developer to get rid of the external controller
and further simplify the programmed sequence of operations. The equipped Python version
features the following:

Python script interpreter engine version 2.7.2
e 2 MB of Non Volatile Memory space for user scripts and data files
2 MB RAM available for the Python engine

The following depicts a schematic of this approach:

FLASH ROM ——— RAM

e I“I:f_.f

RAM for
3GI2G
modem
'JUuJ i) Protocol Stack:
memory

HARDWARE RESOURCES

Reproductlon forbldden without written authorlzatlon from Telit Communications S.p.A. - All Rights Reserved. Page 13 of 74

2.2.

2.3.

2.4,

L

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 14 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Python 2.7.2 Copyright Notice

Copyright (c) 2001-2011 Python Software Foundation.

All Rights Reserved.

Copyright (c) 2000 BeOpen.com.

All Rights Reserved.

Copyright (c) 1995-2001 Corporation for National Research Initiatives.
All Rights Reserved.

Copyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam.
All Rights Reserved.

Please refer to http://www.python.org/doc/copyright/

Python

Python is a dynamic object-oriented multipurpose high level programming language.
Python interpreter implemented version is 2.7.2.

Refer to

http://www.python.org/

and

http://www.python.org/download/releases/2.7.2/

for any information about Python and Python interpreter version 2.7.2.

Python implementation description

Python scripts are text files stored in the Telit module NVM (Non Volatile Memory). There's
a file system inside the module that allows to write and read text and binary files with
different names on one single level (no subdirectories are supported).

http://www.python.org/doc/copyright/�
http://www.python.org/�
http://www.python.org/download/releases/2.7.2/�

lelit
HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

The Python script is executed in a task with the lowest priority on the Telit module, so its
execution won’t interfere with GSM/GPRS/UMTS normal operations. Furthermore, this
allows serial ports, protocol stack etc. to run independently from the Python script.

The Python script interacts with the Telit module functionalities through several built-in
interfaces, as depicted below:

Antenna .
GPSs *

P S receive Hardware Resources —

Antenna

Virtual Internal AT Serial Port

G5 Liorsry

GPIO

L J

GO Library

Prin
Command

Sy |

SER Library

Serial port 1 (USIF1) ex Serial port 0 (USIFO) ex
TRACE PROG

NOTE:

Antenna GPS, GPS receiver and GPS Library are available exclusively for the GPS modules.

e The MDM interface is the most important one. It allows the Python script to send
AT commands, receive responses and unsolicited indications, send data to the
network and receive data from the network during connections. It is quite similar to
the regular serial port interface on the Telit module. The only difference being that
this interface is an internal software bridge between Python and module internal AT

Reproduction forbldden without written authorlzatlon from Telit Communications S.p.A. - All Rights Reserved. Page 15 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

command handling engine, and not a physical serial port. All AT commands working
on the Telit module are working with this software interface as well. Some of them
have no meaning for this interface, such as those regarding serial port settings, while
others, such as the concept of hardware flow control, keeps its meaning but it's
managed internally.

e The MDM?2 interface is the second interface between Python and the module
internal AT command handling. Its purpose is to send AT commands from the Python
script to the module and receive AT responses from the module to the Python script
when the regular MDM built-in module is already in use.

o The SER interface lets the Python script to read from and write to the physical serial
port USIFO, usually the default port to send AT commands to the module (e.g.: to
read information from an external device). When Python is running, this serial port is
free to be used by the Python script since it is not used as the AT command interface;
the AT parser, in fact, is mapped into the internal virtual serial port. No flow control
is available from Python on this port.

o The GPIO interface lets the Python script to handle general purpose input output
faster than through AT commands, skipping the command parser and controlling
directly the pins.

e The GPS interface is the interface between Python and the module’s internal GPS
controller. Its purpose is to handle the GPS controller without the use of dedicated AT
commands through the MDM built-in module.

e The Python print statement, for debugging purposes, is directly forwarded to
second serial port USIF1.

2.5. Python supported features

Python implemented version is a smaller part than the original: core Python interpreter is
mostly supported but only a few Python modules are supported.

The core Python interpreter version is 2.7.2. All Python statements and almost all Python
built-in types and functions are available for development. Refer to chapter PYTHON
STANDARD FUNCTIONS for more details.

Reproductlon forb|dden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 16 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

3. Python Script Operations

3.1. Executing the Python script

The steps required to have a script executing by the Python engine on the Telit module are:

write the Python script, in case splitting it in more than one file;
optionally compile the Python script;

download the, optionally compiled, Python script into the module NVM;
enable the Python script;

run the Python script.

3.1.1. Write the Python script

A Python script is a simple text file with .py extension, it can be written with any text editor.
In case of large application it is useful to split it in more than one file.

The following is the "Hello Word" short Python script example that sends the simplest AT
command to the AT command parser, immediately reads response and then ends.

import MDM

print 'Hello World!'

result = MDM.send("AT\r', 0)
print result

¢ = MDM.read()

print ¢

3.1.2. Compile the Python script

It is an optional operation.
Compiling the Python script on PC before downloading to module saves time at Python script
execution start.
The following procedure allows to compile .py Python files into .pyc Python compiled files:
o install Python version 2.7.2 on your PC (as an example in directory C:\Python27)
o use compileall.py library Python script on your PC to compile all .py files in your

working directory (as an example in directory C:\pytemp)
cd C:\Python27
python -v -S \Lib\compileall.py -I -f C:\pytemp

3.1.3. Download the Python script

Use the following AT command:
ATH#WSCRIPT="<script_name>“,<size>[,<know-how>]
<script_name>: file name

<size>: file size (number of bytes)

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 17 of 74

where

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

<know-how>: (optional) know how protection, 1 = on, 0 = off (default)

The script, the compiled script, any text or binary file, can be downloaded to the module using
the AT#WSCRIPT command. In order to guarantee your company know-how, you have the
option to hide the script text so that the AT#RSCRIPT command does not return the text of
the script and keeps it "confidential”, you can see the name of the script only using the
AT#LSCRIPT command.

In order to download the, optionally compiled, Python script you have to choose a name for
your script on the module, taking care of the following:
e the extension for scripts is .py;
the extension for compiled scripts is .pyc;
any or no extension is permitted for generic text or binary file;
the maximum file name length allowed is 16 characters;
file names are case sensitive.

Then you have to find out the exact size in bytes of the script or compiled script, or generic
text or binary file. For example, right clicking on the file and selecting “size” in “properties”
(attention: this is different from selecting “size on the disc”).

It is important for large files, compared to module serial port buffer size of 4096 bytes, to
activate hardware flow control on your terminal emulator.

It is possible to overwrite an existing file, there is no need to delete old one first.

When using standard Windows terminal emulator Hyper Terminal consider that in some
unexpected conditions cuts or changes part of downloaded file.

In Hyper Terminal application select “Hardware” flow control in serial settings.

In ASCII Setup set “Send line ends with line feeds” and “Append line feeds to incoming line
ends”.

Type for example
AT#WSCRIPT="a.py”,110

wait for the prompt

>>>
and use “Send Text file” selecting the proper file.
Wait for the result: OK or ERROR.

= __r* , y ""'““"' - /‘— |

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 18 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

COMA1 Properties
Port Settings |

Bits per second: | 115200 [v|
Data bits: | & [v]
Parity: |Mone [v|
Stop bits: |1 [v]
Flow control: | Hardware [v]

ok || caneel || speb |

- ~

test Properties E]
Connect To 58“""93|

Function, arrow, and chl keys act az
(%) Teminal keys () windows keys

Backzpace key zendz
& Cu+H O Del) Cul+H, Space, Cirl+H

Ermulation:

|.-'1'l.utu:| detect [V]

T elnet terminal [D: AMSI

Backzomoll buffer ines: 500 {3]

[] Play sound when connecting or disconnecting

[Input Tranzlation...] | ASCH Setup...

[ok,][Cancel l

horty o 5 Py g | (AR

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 19 of 74

3.1.4.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

ASCII Setup B

A5C Sending
Send line ends with line feeds
[] Echo typed characters locally

Line delay: |0 millizeconds.

Character delay: |0 millizeconds.

A5C Receiving

[v]: fippend line feeds to incoming line ends
[] Force incoming data to 7-bit A5 Cl1
Wwrap lines that excesd terminal width

l k.] l Cancel

Enable the Python script

Use the following AT command:
ATHESCRIPT="<script_name>*

where
<script_name>: script name to be executed

Using the AT#ESCRIPT command select the Python script which will be executed from the
next start-up and in every future start-up or after ATHEXECSCR command. It can be either
a .py Python script or a .pyc compiled Python script. In case the application consists of more
than one file only the main script must be enabled for execution.

When selecting the script to enable between the ones downloaded to the module:
AT#LSCRIPT - can help checking the names of the scripts;
AT#ESCRIPT? - can help checking the name of the script that is enabled at the moment.

NOTE:

There is no error return value for non existing script name in the module memory typed in
command AT#ESCRIPT. For this reason it’s recommended to double check the name of the
script that you want to execute. On the other hand this characteristic permits additional
possibilities like enabling the Python script before downloading it on the module or not
having to enable the same script name every time the script has been changed, deleted and
replaced with another script but with the same name.

3.1.5.

3.1.6.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Type for example
ATH#ESCRIPT="a.py”

Wait for the result: OK or ERROR.

Run the Python script

In default configuration the Python script downloaded to module and enabled is executed at
every module power on if the DTR line is sensed LOW (2.8V at the module DTR pin - RS232
signals are inverted) on USIFO at start-up (this means that no AT command interface is
connected to the modem serial port), and if the script name enabled matches with one of the
script names of the scripts downloaded.

For example the Python script correctly downloaded and enabled is executed when the
module is powered on and the serial cable was previously disconnected from USIFO.

In order to block Python script execution and control the module through the AT command
interface on the serial port (for example to update locally a new script) the module shall be
powered on with the DTR line HIGH (0V at the module DTR pin). In this condition the
Python engine is not started and the script is not executed.

The real execution of the .py Python script is delayed from the power on due to the time
needed by Python to parse the script. The larger is the script, the longer is this delay.

The execution of .pyc compiled Python script is faster because there is no parsing of the script,
just reading the file from NVM.

Another possibility is to run the correctly downloaded and enabled Python script from
terminal emulator using the following AT command:
ATHEXECSCR

Another possibility is to select a second way of executing the Python script at every module
power on using the following AT command:
AT#STARTMODESCR=<script_start_mode>[,<script_start_to>]
where
<script_start_mode>: mode (default 0)
<script_start_to>: timeout (default 10)
If the mode is set to 1 than the Python script downloaded to module and enabled is executed
at every module power on if the user does not send any AT command on the serial port for the
time interval specified in <script_start_to> parameter (default 10s).

Read the Python script

Use the following AT command:
AT#RSCRIPT="<script_name>“
where
<script_name>: file name

Using the command AT#RSCRIPT read a saved script, compiled script, generic text or binary
file. If know-how protection is activated than AT#RSCRIPT will return only OK: no Python

Reproductlon forb|dden without written authorization from Telit Communications S.p.A. - All nghts Reserved. Page 21 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

script source code will be returned. In this way no one will be able to read your Python script
from the module serial port.

It is important for large files, compared to PC serial port buffer size, to activate hardware flow
control on your terminal emulator.

Type for example
AT#RSCRIPT="a.py
Wait for the prompt

<<

Receive file data and wait for the result: OK or ERROR.

3.1.7. List saved Python scripts

Use the following AT command:
AT#LSCRIPT

This command shows the list of the file names currently saved, their size and the number of
free bytes in memory.

3.1.8. Delete the Python script

Use the following AT command:
AT#DSCRIPT="<script_name>*
where
<script_name>: file name

Using the AT#DSCRIPT command delete from the module memory a saved script, compiled
script, generic text or binary file.

Type for example
AT#DSCRIPT="a.py”
Wait for the result: ok or ERROR.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 22 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

3.2. Debug Python script

The debug of the running Python script can be done on the second serial port USIF1 of the
module.

Use the following AT command:
AT#PORTCFG=3
to configure ports properly.
Reboot module to make #PORTCFG configuration working.
In #PORTCFG: 3 configuration Python standard output and standard error, including print
statements, are redirected to USIF1 at 115200.
In this configuration AT2 parser instance on USIF1 is not available.
In this configuration Python scripts can be debugged with or without USB inserted.

Connect to the second module serial port USIF1 at 115200.
Collect Python standard output and standard error:
e Python information messages (for example the version);
e Python error information;
e Results of all Python “print” statements.

e 0 A g it *——-—Lﬂf\/ 5

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 23 of 74

4.1.

4.1.1.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Python Build-in Custom Modules

Several built-in custom modules have been included in the Python core, specifically
developed keeping in mind the hardware environment of the module.

The built-in modules included are:

MDM interface between Python and the module AT command handling

MDM?2 | second interface between Python and the module AT command handling

SER interface between Python and the module serial port USIFOQ direct handling

GPIO interface between Python and the module internal general purpose input
output direct handling

GPS interface between Python and the module internal GPS controller

MDM built-in module

The MDM built-in module is the interface between Python and the module AT commands
parser engine.

You need to use the MDM built-in module if you want to send AT commands and data from
the Python script to the network and receive responses and data from the network during
connections.

In the default configuration, echo (ATEO) is disabled and the response format of result codes
is set to verbose (ATV1).

If you want to use this module you need to import it first:
import MDM
then you can use MDM built-in module methods as in the following example:

a = MDM.send('AT", 0)
b = MDM.sendbyte(0x0d, 0)
¢ = MDM.read()

which sends 'AT" and reads 'OK' response.
More details about MDM built-in module methods can be found in the following paragraphs.

MDM.send(string, timeout)

This command sends a string to the AT command interface.

The first input parameter string is a Python string to send to the AT command interface.

The second input parameter timeout is a Python integer, measured in 1/10s, and is important
in online mode when flow control is activated. In fact it represents the maximum time to wait
for the string to be sent to the AT command interface when buffer is full and flow control
blocks further data. The timeout range is (0 + 32767).

Reproductlon forb|dden without written authorization from Telit Communications S.p.A. - All nghts Reserved. Page 24 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

This method returns immediately after the string has been sent to the AT interface or after the
timeout period if the whole string could not be sent to the AT interface. The return value is a
Python integer which is -1 if the timeout period has expired, 1 otherwise.

Example:
a = MDM.send('AT", 5)

sends the string 'AT' to AT command handling, waiting up to 0.5 s, assigning the return value
to a.

NOTE:

The buffer available for the MDM.send command is 4096 bytes.

4.1.2. MDM.read()

This command receives a string from the AT command interface.

It has no input parameter.

The return value is a Python string which contains the data received and stored in buffer at the
moment of command execution. The value might be empty if no data is received.

Example:
a = MDM.read()

Receives a string from AT command handling, assigning the return value to a.

NOTE:

The buffer available for MDM.read command is 4096 bytes.

NOTE:

It is up to Python script to keep empty MDM.read buffer.

4.1.3. MDM.sendbyte(byte, timeout)

This command sends one byte to the AT command interface.

The first input parameter byte can be zero or any Python byte to send to the AT command
interface.

The second input parameter timeout is a Python integer, measured in 1/10s, and is important
in online mode when flow control is activated. In fact it represents the maximum time to wait
for the byte to be sent to the AT command interface when buffer is full and flow control
blocks further data. The timeout range is (0 + 32767).

= 'y ‘:-— ’ \ f ‘ ‘

S

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 25 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

This method returns immediately after the byte has been sent to the AT interface or after the
timeout period if the byte could not be sent to the AT interface. The return value is a Python
integer which is -1 if the timeout expired, 1 otherwise.

Example:

b = MDM.sendbyte(0x0d, 0)

Sends the byte 0x0d (carriage return <CR>) to the AT commands handling, without waiting
and assigning the return value to b.

4.14. MDM.readbyte()

This command receives a byte from the AT command interface.

It has no input parameter.

The return value is a Python integer which is the byte value received and stored in buffer at
the moment of command execution or is -1 if no data is received. The return value can also be
zero.

Example:
b = MDM.readbyte()

receives a byte from AT command handling, assigning the return value to b.

4.1.5. MDM.sendavail()

This command queries the number of bytes available to send to MDM buffer.

It has no input parameter.

The return value is a Python integer which is the number of bytes available to send to MDM
buffer.

Example:
n = MDM.sendavail()

queries the number of bytes available to send, assigning the return value to n.

4.1.6. MDM.getDCD()

This command gets Carrier Detect (DCD) from the AT command interface.
It has no input parameter.
The return value is a Python integer which is either 0 if DCD is OFF or 1 if DCD is ON.

Example:

cd = MDM.getDCD()

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 26 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

gets DCD from AT command handling, assigning the return value to cd.

4.1.7. MDM.getCTS()

This command gets Clear to Send (CTS) from the AT command interface.

It has no input parameter.

The return value is a Python integer which is either 0 if CTS is set to OFF or 1 if CTS is set to
ON.

Example:
cts = MDM.getCTS()

gets CTS from AT command handling, assigning the return value to cts.

4.1.8. MDM.getDSR()

This command gets Data Set Ready (DSR) from the AT command interface.
It has no input parameter.
The return value is a Python integer which is either O if DSR is OFF or 1 if DSR is ON.

Example:
dsr = MDM.getDSR()

gets DSR from AT command handling, assigning the return value to dsr.

4.1.9. MDM.getRI()

This command gets Ring Indicator (RI) from the AT command interface.
It has no input parameter.
The return value is a Python integer which is either 0 if RI is set to OFF or 1 if Rl is set to ON.

Example:
ri = MDM.getRI()

gets RI from AT command handling, assigning the return value to ri.

4.1.10. MDM.setRTS(RTS_value)

This command sets Request to Send (RTS) in the AT command interface.

The input parameter RTS_value is a Python integer which is either 0 if setting RTS to OFF or
1 if setting RTS to ON.

No return value.

Example:

| -_-...‘I!;E E: i 07 .. o s . - S y » '

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 27 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

MDM.setRTS(1)

sets RTS to ON in AT command handling.

4.1.11. MDM.setDTR(DTR_value)

This command sets Data Terminal Ready (DTR) in the AT command interface.

The input parameter DTR_value is a Python integer which is either 0 if setting DTR to OFF or
1 if setting DTR to ON.

No return value.

Example:

MDM.setDTR(0)

sets DTR to OFF in AT command handling.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 28 of 74

4.2.

4.2.1.

Ll

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

MDM2 built-in module

MDM2 built-in module is the second interface between Python and the module internal AT
command handling. It is used to send AT commands from Python script to module and
receive AT responses from module to Python script when the classic MDM built-in module is
already in use.

Though MDM2 built-in module is independent from activation of CMUX protocol, it works
on the second instance of AT parser in the same way the second CMUX port does. So the
rules on AT commands that apply on the first and second CMUX ports (AT parser instances)
apply on MDM and MDM2 as well.

See "AT Commands Reference Guide" and "CMUX User Guide" for details on availability of
AT commands on all instances and for the rules on parallel execution of AT commands on
two instances.

In the default configuration, echo (ATEO) is disabled and the response format of result codes
is set to verbose (ATV1).

If you want to use MDM2 built-in module you need to import it first:
import MDM2
than you can use MDM2 built-in module methods like in the following example:

a=MDM2.send('AT", 0)
b = MDM2.sendbyte(0x0d, 0)
¢ = MDM2.read()

which sends 'AT" and reads 'OK' response.
More details about MDM2 built-in module methods can be found in the following paragraphs.

MDM2.send(string, timeout)

This command sends a string to the AT command interface.

The first input parameter string is a Python string to send to the AT command interface.

The second input parameter timeout is a Python integer, measured in 1/10s, and is important
in online mode when flow control is activated. In fact it represents the maximum time to wait
for the string to be sent to the AT command interface when buffer is full and flow control
blocks further data. The timeout range is (0 + 32767).

This method returns immediately after the string has been sent to the AT interface or after the
timeout period if the whole string could not be sent to the AT interface. The return value is a
Python integer which is -1 if the timeout period has expired, 1 otherwise.

Example:

a=MDM2.send('AT', 5)

sends string 'AT' to AT command handling, possibly waiting for 0.5 s, assigning the return
value to a.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 29 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

NOTE:

The buffer available for MDM2.send command is 4096 bytes.

4.2.2. MDM2.read()

This command receives a string from the AT command interface.

It has no input parameter.

The return value is a Python string which contains the data received and stored in buffer at the
moment of command execution. The value might be empty if no data is received.

Example:
a=MDM2.read()

receives a string from AT command handling, assigning the return value to a.

NOTE:

The buffer available for MDM2.read command is 4096 bytes.

NOTE:

It is up to Python script to keep empty MDM2.read buffer.

4.2.3. MDMZ2.sendbyte(byte, timeout)

This command sends a byte to the AT command interface.

The first input parameter byte can be zero or any Python byte to send to the AT command
interface.

The second input parameter timeout is a Python integer, measured in 1/10s, and is important
in online mode when flow control is activated. In fact it represents the maximum time to wait
for the byte to be sent to the AT command interface when buffer is full and flow control
blocks further data. The timeout range is (0 + 32767).

This method returns immediately after the byte has been sent to the AT interface or after the
timeout period if the byte could not be sent to the AT interface. The return value is a Python
integer which is -1 if the timeout expired, 1 otherwise.

Example:
b = MDM2.sendbyte(0x0d, 0)

sends byte 0x0d, that is <CR>, to AT command handling, without waiting, assigning the

return value to b.
= 'y ‘:-— ’ I \ f ‘ ‘
R 4N Fa - - /_ |

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 30 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

4.2.4. MDM2.readbyte()

This command receives a byte from the AT command interface.

It has no input parameter.

The return value is a Python integer which is the byte value received and stored in buffer at
the moment of command execution or is -1 if no data is received. The return value can also be
zero.

Example:
b = MDM2.readbyte()

receives a byte from AT command handling, assigning the return value to b.

4.2.5. MDMZ2.sendavail()

This command queries the number of bytes available to send to MDM2 buffer.

It has no input parameter.

The return value is a Python integer which is the number of bytes available to send to MDM2
buffer.

Example:

n = MDMZ2.sendavail()

queries the number of bytes available to send, assigning the return value to n.

4.2.6. MDM2.getDCD()

This command gets Carrier Detect (DCD) from the AT command interface.
It has no input parameter.
The return value is a Python integer which is 0 if DCD is set to OFF or 1 if DCD is set to ON.

Example:
cd = MDM2.getDCD()

gets DCD from AT command handling, assigning the return value to cd.

4.2.7. MDM2.getCTS()

This command gets Clear to Send (CTS) from the AT command interface.

It has no input parameter.

The return value is a Python integer which is either 0 if CTS is set to OFF or 1 if CTS is set to
ON.

Example:

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 31 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

cts = MDM2.getCTS()

gets CTS from AT command handling, assigning the return value to cts.

4.2.8. MDM2.getDSR()

This command gets Data Set Ready (DSR) from the AT command interface.

It has no input parameter.

The return value is a Python integer which is either 0 if DSR is set to OFF or 1 if DSR is set
to ON.

Example:

dsr = MDM2.getDSR()

gets DSR from AT command handling, assigning the return value to dsr.

4.2.9. MDM2.getRI()

This command gets Ring Indicator (RI) from the AT command interface.
It has no input parameter.
The return value is a Python integer which is 0 if Rl is set to OFF or 1 if Rl is set to ON.

Example:
ri = MDM2.getRI()

gets RI from AT command handling, assigning the return value to ri.

4.2.10. MDM2.setRTS(RTS_value)

This command sets Request to Send (RTS) in the AT command interface.

The input parameter RTS_value is a Python integer which is 0 if setting RTS to set to OFF or
1 if setting RTS to set to ON.

No return value.

Example:

MDM2.setRTS(1)

sets RTS to ON in AT command handling.

4.2.11. MDM2.setDTR(DTR_valug)

This command sets Data Terminal Ready (DTR) in the AT command interface.
The input parameter DTR_value is a Python integer which is 0 if setting DTR to set to OFF or
1 if setting DTR to set to ON.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 32 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

No return value.
Example:
MDM2.setDTR(0)

sets DTR to OFF in AT command handling.

iy

Reproduction forbldden without written authorlzatlon from Telit Communications S.p.A. - All Rights Reserved. Page 33 of 74

4.3.

4.3.1.

4.3.2.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

SER built-in module

The SER built-in module is an interface between the Python core and the device serial port
over the RXD/TXD pins direct handling. You need to use the SER built-in module if you
want to send data from the Python script to the serial port and to receive data from the serial
port USIFO to the Python script. This serial port handling module can be used, for example, to
interface the module with an external device (such as a GPS) and read/send its data (e.g.
NMEA). The SER built-in module allows to control physical lines used as GPIO.

If you want to use SER built-in module you need to import it:
import SER
then you can use its methods, like in the following example:

a = SER.set_speed('9600")
b = SER.send('test’)

¢ = SER.sendbyte(0x0d)
d = SER.read()

which sends ‘test' followed by <CR> and receives data.

More details about SER built-in module methods can be found in the following paragraphs.

SER.send(string)

This command sends a string to the serial port TXD/RXD.
The input parameter string is a Python string to send to the serial port USIFO.
The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:
a = SER.send('test")

sends the string 'test’ to the serial port USIFO handling, assigning the return value to a.

NOTE:

the buffer available for the SER.send command is 4096 bytes.

— T

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 34 of 74

SER.read()

This command receives a string from the serial port TXD/RXD.

It has no input parameter.

The return value is a Python string which contains the data received and stored in buffer at the
moment of command execution. The value might be empty if no data is received.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Example:
a = SER.read()

receives a string from the serial port USIFO handling, assigning the return value to a.

NOTE:

the buffer available for the SER.read command is 4096 bytes.

NOTE:

It is up to Python script to keep empty SER.read buffer.

4.3.3. SER.sendbyte(byte)

This command sends a byte to the serial port TXD/RXD.
The input parameter byte can be zero or any Python byte to send to the serial port
The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:

b = SER.sendbyte(0x0d)

sends the byte 0x0d, that corresponds to <CR>, to the serial port USIFO handling, assigning
the return value to b.

4.3.4. SER.readbyte()

This command receives a byte from the serial port TXD/RXD.

It has no input parameter.

The return value is a Python integer which is the byte value received and stored in buffer at
the moment of command execution or is -1 if no data is received. The return value can also be
zero.

Example:
b = SER.readbyte()

receives a byte from serial port USIFO handling, assigning the return value to b.

4.3.5. SER.sendavail()

This command queries the number of bytes available to send to SER buffer.

It has no input parameter.

The return value is a Python integer which is the number of bytes available to send to SER
buffer.

| -_-...‘I!;E E: i 07 .. o s . - S y » '

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 35 of 74

4.3.6.

4.3.7.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Example:
n = SER.sendavail()

gueries the number of bytes available to send, assigning the return value to n.

SER.set_speed(speed, <char format>)

This command sets the serial port TXD/RXD speed. The default serial port TXD/RXD speed
is 115200.

The first input parameter speed is a Python string which is the value of the serial port speed. It
can assume the same values as the +IPR command.

The second optional parameter <char format> is a Python string that represents the character
format to be used:

the first character is the number of bits per char (7 or 8), then the parity setting (N - none, E-
even, O- odd) and in the end the number of stop bits (1 or 2). The default value is "8N1".

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:
b = SER.set_speed('9600")

sets the serial port USIFO speed to 9600, assigning the return value to b.

NOTE:

sending the +IPR command to the device does not affect the physical serial port, you must use
this function to set the speed of the port when using the Python engine.

SER.setDCD(DCD_value)

This command sets Carrier Detect (DCD) on the serial port USIFO.

The input parameter DCD_value is a Python integer which is either 0 if DCD is set to OFF or
1if DCD is set to ON.

No return value.

Example:
SER.setDCD(1)

sets DCD to ON in USIFO.

SER.setCTS(CTS value)
This command sets Clear to Send (CTS) on the serial port USIFO.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

The input parameter CTS_value is a Python integer which is either 0 if CTS is set to OFF or 1
if CTS is set to ON.
No return value.

Example:

SER.setCTS(1)

sets CTS to ON in USIFO.

4.3.9. SER.setDSR(DSR_value)

This command sets Data Set Ready (DSR) on the serial port USIFO.

The input parameter DSR_value is a Python integer which is either 0 if DSR is set to OFF or 1
if DSR is set to ON.

No return value.

Example:
SER.setDSR(1)

sets DSR to ON in USIFO.

43.10. SERwsetRI(RI_value)

This command sets Ring Indicator (RI) on the serial port USIFO.

The input parameter R1_value is a Python integer which is either 0 if RI is set to OFF or 1 if
Rl is set to ON.

No return value.

Example:
SER.setRI(1)

sets Rl to ON in USIFO.

4.3.11. SER.getRTS()

This command gets Request to Send (RTS) from the serial port USIFO.

It has no input parameter.

The return value is a Python integer which is either 0 if RTS is set to OFF or 1 if RTS is set to
ON.

Example:

rts = SER.getRTS()

gets RTS from USIFO, assigning the return value to rts.

e 0 / jagl——=~

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 37 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

4312. SER.getDTR()

This command gets Data Terminal Ready (DTR) from the serial port USIFO.

It has no input parameter.

The return value is a Python integer which is either 0 if DTR is set to OFF or 1 if DTR is set
to ON.

Example:

dtr = SER.getDTR()

gets DTR from USIFO0, assigning the return value to dtr.

/ - —— » AT k e 2P - .

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 38 of 74

4.4.

4.4.1.

4.4.2.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

GPI10O built-in module

The GPIO built-in module is an interface between the Python core and the module internal
general purpose input output direct handling. The GPIO built-in module is used to set GPIO
values and to read GPIO values from the Python script. You can control the GPIO pins also
by sending internal 'AT#GPIO' commands using the MDM module, but using the GPIO
module is faster because no command parsing is involved, therefore its use is recommended.

NOTE:

The Python core does not verify if the pins are already used for other purposes by other
functions, it's the customer responsibility to ensure that no conflict over pins occurs.

If you want to use the GPIO built-in module you need to import it first:
import GPI1O
then you can use its methods as in the following example:

a = GPI10.getlOvalue(5)
b = GP10.setlOvalue(4, 1)

this reads the GP10O 5 value and sets GPIO 4 to the output with value 1.

More details about GPIO built-in module methods are in the following paragraphs.

GPI10.setlOvalue(GP1Onumber, value)

This method sets the output value of a GPIO pin.

The first input parameter GP1Onumber is a Python integer which is the number of the GPIO.
The second input parameter value is a Python integer which is the output value. It can be 0 or
1.

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:
b = GP10O.setlOvalue(4, 1)

sets GPIO 4 to output with value 1, assigning the return value to b.

GP10.getlOvalue(GP1Onumber)

This method gets the input value of a GPIO.

The input parameter GP1Onumber is a Python integer which is the number of the GPIO.

The return value is a Python integer which is -1 if an error occurred otherwise it is the input
value. It can be either O or 1.

Example:

Reproductlon forbidden without written authonzatlon from Telit Communications S.p.A. - All nghts Reserved. Page 39 of 74

4.4.3.

4.44.

4.4.5.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

b = GP10.getlOvalue(5)

gets the GPIO 5 input value, assigning the return value to b.

GPI10.setlOdir(GP1Onumber, value, direction)

This method sets the direction of a GPIO.

The first input parameter GP1Onumber is a Python integer which is the number of the GPIO.
The second input parameter value is a Python integer which is the output value. It can be
either O or 1. It is only used if the direction value is 1, it has no meaning if the direction value
is 0.

The third input parameter direction is a Python integer which is the direction value. It can be
either O for input or 1 for output or 2 for alternate function or 3 for tristate pull

for further notes.
The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:
¢ = GPI0O.setlOdir(4, 0, 0)

sets GPIO 4 to input with the value parameter having no meaning, and assigning the return
value to c.

NOTE:

when the direction value is not 1, although the parameter value has no meaning, it is
necessary to assign it one of the two possible values: 0 or 1

GPI10.getlOdir(GP1Onumber)

This method gets the direction of a GPIO.
The input parameter GP1Onumber is a Python integer which is the number of the GPIO.
The return value is a Python integer which is -1 if an error occurred otherwise is direction
value. It is O for input or 1 for output or 2 for alternate function or 3 for tristate pull down.
Example:

d = GPIO.getlOdir(7)

gets GPIO 7 direction, assigning the return value to d.

GPI10.getADC(adcNumber)

This method gets ADC value. It is equivalent to the AT#ADC command.
The input parameter adcNumber is a Python integer which represents the ADC number that
will be read and converted in voltage.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

The return value is a Python integer which is -1 if an error occurred otherwise the converted
voltage is returned in mV.

Example:
mV = GPI0.getADC(2)

gets ADC number 2 input voltage, assigning the return value in mV.

4.4.6. GPI10O.setDAC(enable, value)

This method sets the DAC value. It is equivalent to the AT#DAC command.

The first input parameter enable is a Python integer and can assume values 0 or 1. If it is set
to 1 enables DAC output otherwise if it is set to 0 disabled DAC output.

The second input parameter value is a Python integer and represents the scale factor of output
voltage and can assume values in the range 0-1023.

The return value is a Python integer that has value -1 if an error occurred otherwise it has
value 1.

Example:
res = GP10.setDAC(1, 512)

sets DAC output voltage at half the range, assigning the return value to res.

4.4.7. GPI10.setVAUX(vauxNumber, enable)

This method enables or disables the VAUX. It is equivalent to the AT#VAUX command.

The first input parameter vauxNumber is a Python integer that represents VUAX number that
will be enabled or disabled.

The second input parameter enable is a Python integer that can assume value 1 in order to
enable VAUX output or 0 if VAUX output should be disabled.

The return value is a Python integer that has value -1 if an error occurred otherwise it has the
value 1.

Example:
res = GP10.setVAUX(1, 1)

enables VAUX number 1 output, assigning the return value to res.

4.4.8. GPI10.getAXE()

This method gets the hands free status value. It is equivalent to the AT#AXE command.
It has no input parameter.
The return value is a Python integer that is either O if a hand free is not connected or 1 if a

hand free is connected.
32440 | s ‘:-— - I \ f ‘ ‘
R an Fa i " /_ |

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 41 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Example:
hf = GPIO.getAXE()

gets the AXE value, assigning the return value to hf.

4.4.9. GPI10.setSLED(status, onDuration, offDuration)
This method sets the status led configuration values. It is equivalent to the AT#SLED
command.

The first input parameter status is a Python integer that represents the configuration of status

led and can assume the following values:
0 - ALWAYS OFF
1- ALWAYS ON
2-AUTO
3- BLINKING

The second input parameter onDuration is a Python integer which is the period of ON
configuration of status led measured in 1/10s.

The third input parameter offDuration is a Python integer which is the period of OFF
configuration of status led measured in 1/10s.

The return value is a Python integer which is -1 if an error occurred otherwise it is 1.

Example:
res = GP10.setSLED(3, 10, 90)

sets status led configuration to blinking with 1s in ON period and 9s in OFF period, assigning
the return value to res.

44.10. GPIO.getCBC()

This method gets the charger status and battery voltage. It is equivalent to the AT#CBC
command.
It has no input parameters.
The return value is a Python tuple formatted in the following way:
(chargerStatus, batteryVoltage).
First element of tuple is a Python integer which is charger status:
0 - charger not connected
1 - charger connected and charging
2 - charger connected and charging process completed
Second element of tuple is a Python integer which is battery voltage in mV.

Example:
cbc = GP10.getCBC()

gets charger status and battery voltage values, assigning the return value to cbc tuple.

- . Ty il
S g . /, [N = - E "' g
— - "

S

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 42 of 74

4.5.

45.1.

4.5.2.

4.5.3.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

GPS built-in module

GPS built-in module is the interface between Python and module internal GPS controller. It is
used in order to handle GPS controller without dedicated AT commands through MDM built-
in module.

If you want to use GPS built-in module you need to import it first:
import GPS

After this you can start using GPS built-in module methods like in the following example:
position = GPS.getActualPosition()

gets a string with position information formatted in the same way as AT$GPSACP response.
More details about GPS built-in module methods can be found in the following paragraphs.

GPS.powerOnOff(newStatus)

This method powers ON/OFF GPS controller. It is equivalent to the AT$GPSP command.
The input parameter newStatus is a Python integer and can have the following values:

0 - to power OFF GPS controller

1 - to power ON GPS controller.
There is no return value.

Example:
GPS.powerOnOff(0)

GPS controller is powered OFF.

GPS.getPowerOnOff()

This method gets GPS controller current power ON/OFF status.

It has no input parameter.

The return value is a Python integer which is 0 if GPS controller is powered off or 1 if GPS
controller is powered on.

Example:

status = GPS.getPowerOnOff()

gets GPS controller current power ON/OFF status, assigning the return value to status.

GPS.getActualPosition()

This method gets GPS last position information. It is equivalent to the AT$GPSACP
command.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

It has no input parameter.
The return value is a Python string which is the last position information formatted in the
same way as for ATSGPSACP command response.

Example:

lastPosition = GPS.getActualPosition()

gets GPS last position information, assigning the return value to lastPosition.

4.5.4, GPS.getLastGGA()

This method gets GPS last GGA NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last GGA NMEA sentence formatted
according to NMEA specification.

Example:
gga = GPS.getLastGGA()

gets last GGA NMEA sentence, assigning the return value to gga.

4.5.5. GPS.getLastGLL()

This method gets GPS last GLL NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last GLL NMEA sentence formatted
according to NMEA specification.

Example:
gll = GPS.getLastGLL()

gets last GLL NMEA sentence, assigning the return value to gll.

4.5.6. GPS.getLastGSA()

This command gets GPS last GSA NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last GSA NMEA sentence formatted
according to NMEA specification.

Example:

gsa = GPS.getLastGSA()

gets last GSA NMEA sentence, assigning the return value to gsa.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 44 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

4.5.7. GPS.getLastGSV()

This command gets GPS last GSV NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the concatenation of the last GSV NMEA
sentences formatted according to NMEA specification.

Example:
gsv = GPS.getLastGSV()

gets last GSV NMEA sentence, assigning the return value to gsv.

458, GPS.getLastRMC()

This command gets GPS last RMC NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last RMC NMEA sentence formatted
according to NMEA specification.

Example:
rms = GPS.getLastRMC()

gets last RMC NMEA sentence, assigning the return value to rmc.

45.9. GPS.getLastVTG()

This command gets GPS last VTG NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last VTG NMEA sentence formatted
according to NMEA specification.

Example:

vtg = GPS.getLastVTG()

gets last VTG NMEA sentence, assigning the return value to vitg.

e / ey jagl——=~

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 45 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

B. Python standard functions

In this paragraph you can find detailed description of Python language supported features in
Telit module. Note that all the functions listed below are available in the Python version

2.7.2.
5.1. Technical characteristics
5.1.1. General

All Python statements and almost all Python built-in types and functions are supported. See in
the table below the features not supported:

complex
unicode
docstring
packages

Available standard built-in modules are:

marshal
imp
_ast
__main__
__builtin_
Sys
exceptions
gc
_warnings
_md5
binascii
_sre
_weakref
_symtable
_functools
_socket
time
posix
thread
signal
errno
cStringlO

All others are not supported.

A small collection of standard Python modules written in Python (not built-in) is available.
These .py files are mostly identical to the ones available for PC with minor changes.

e -

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 46 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2. Python supported features

Refer to the documents available online such as: Python 2.7.2 Tutorial, Python 2.7.2
Reference Manual or Python 2.7.2 Library Reference for details about all the features listed in
the paragraphs below.

5.2.1. Operators, statements, functions
List of supported operators, statements, functions:

comments #

line joining \

operators +, -, *, /, **, %
operators <<, >>, &, |, ®, ~
parentheses

assignment

comparison operators <, >, ==, <=, >=, 1= <>
comparison operators in, not in
print statement

if, elif, else statement
indentation

and, or, not keywords

for in statement

while statement

range() function

break and continue statements
pass statement

functions (without docstrings) (def)
return statement

lambda forms

objects

object methods

del statement

modules

import statement

from statement

exceptions

try except finally statements
raise statement

classes (class)

class instances

global statement

is, is not tests

exec statement

iterators

& ki - l 4 4 ‘ o 08 ‘-;": f

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 47 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

e generators
e yield statement
e with statement

5.2.2. Built-in Functions

The following built-in functions are supported:

abs
all
any
basestring
bin
bool
bytearray
callable
chr
classmethod
cmp
compile
complex (raises exception)
delattr
dict
dir
divmod
enumerate
eval
execfile
filter
float
format
frozenset
getattr
globals
hasattr
hash
help
hex
id
input
int
isinstance
issubclass
iter
len
list
locals
long

map
max
memoryview
min
next
object

Page 48 of 74

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

oct
open
ord
pow
print
property
range
raw_input
reduce
reload
repr
reversed
round
set
setattr
slice
sorted
staticmethod
str
sum
super
tuple
type
vars
Xrange
zip
__import__
apply
buffer
coerce
intern

5.2.3. Built-in Constants

The following built-in constants are supported:

False
True
None
NotImplemented
Ellipsis
__debug__

- T . A = . - : ¥
e | ¥ i N o

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 49 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.24. Truth Value Testing

Truth value testing is supported.

5.2.5. Boolean Operations
The following Boolean operations are supported:

Xory
xand y
not X

5.2.6. Comparisons

The following comparisons are supported:

5.2.7. Numeric Types: Integer, Long Integer and Floating Point
The following operations are supported with the integer, long integer and floating point type:

X+y
X-y
X*y
xly
xIl'y
X%y
-X
+X
abs(x)
int(x)
long(x)
float(x)
divmod(x, y)
pow(X, y)
X ** y
round(x[, n])

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 50 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.8. Numeric Types: Integer and Long Integer
The following bit-string operations and methods are supported with the integer and long

integer type:

x|y
XNy
X&Yy
X <<y
X>>y
~X
bit_length()

5.2.9. Numeric Types: Floating Point
The following methods are supported with the floating point type:

as_integer_ratio()
is_integer()
hex()
fromhex(s)

Numeric Types: Complex

5.2.10.
Complex numbers are not supported.
5.2.11. Iterator Types
The following methods are supported with the iterator type
iter ()
next()
5.2.12. Generator Types
Generator types are supported.
5.2.13. Sequence Types: String, List, Tuple, Bytearray, Buffer and Xrange
The following operations are supported with the string, list, tuple, bytearray, buffer and

Xrange types:

Page 51 of 74

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

xins
xnotins
S+t
s*n,n*s
s[i]
s[i:j]
s[i:j:K]
len(s)
min(s)
max(s)
s.index(i)
s.count(i)

Xrange type supports only indexing, iteration and len().

5.2.14. Sequence Types: Unicode
Unicode is not supported.

5.2.15. Sequence Types: String

The following methods are supported with the string types:

capitalize
center
count
decode
encode
endswith
expandtabs
find
format
index
isalnum
isalpha
isdigit
islower
isspace
istitle
isupper
join
ljust

lower

Istrip
parition
replace

rfind
rindex

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 52 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

rjust
rpartition
rsplit
rstrip
split
splitlines
startswith
strip
swapcase
title
translate
upper
Aill

5.2.16. Mutable Sequence Types: List and Bytearray

The following additional operations are supported with the lists and bytearray types:

s[i] = x
sfizjl =t
del s[i:j]
s[i:j:k] =t
del s[i:j:k]
s.append(x)
s.extend(x)
s.count(x)
s.index(x[, i[, j11)
s.insert(i, x)
s.pop([i])
s.remove(x)
s.reverse()
s.sort([cmpl, key[, reverse]]])

s L5 / 45 - i Lw/ _§

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 53 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.17. Set Types: Set and Frozenset

The following methods are supported with the set and frozenset types:

len(s)
xins
xnotins
isdisjoint()
issubset()
set <= other()
set < other()
issuperset
set >= other()
set > other()
union
set | other | ...()
intersection
set & other & ...()
difference
set - other - ...()
symmetric_difference
set ” other()
copy()

The following methods are supported with the set type:

update
set |= other | ...()
intersection_update
set &= other & ...()
difference_update
set -= other | ...()
symmetric_difference_update
set A= other()
add
remove
discard
pop
clear

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 54 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.18. Mapping Types: Dictionary

The following operations are supported with the dictionaries:

len(d)
dlkey]
d[key] = value
del d[key]
key in d
key notind
iter(d)
clear()
copy()
fromkeys(seq,[value])
get(key,[default])
has_key(key)
items()
iteritems()
iterkeys()
itervalues()
keys()
pop(key,[default])
popitem()
setdefault(key,[default])
update([other])
values()
viewitems()
viewkeys()
viewvalues()

5.2.19. File Objects

The following methods are supported with the file objects:

close()
flush()
fileno()
isatty()
next()
read([size])
readline([size])
readlines([sizehint])
xreadlines()
seek(offset[, whence])
tell()
write(str)
writelines(seq)

The following attributes are supported with the file objects:

e 0 / jagl——=~

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 55 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

closed
encoding
errors
mode
name
newlines
softspace

NOTE:
Root directory for Python scripts and in general for text and binary files is:

Isys
and cannot be changed.

Files path name in Python scripts shall refer to this root directory.
Path separator is /.

Example:
f = open('/sys/example.txt’, 'rb")

5.2.20. Memoryview Objects

The following methods are supported with the memoryview objects:

tobytes()
tolist()

The following attributes are supported with the memoryview objects:

format
itemsize
shape
ndim
strides
readonly

5.2.21. Module Objects

Module objects are supported.
The following attributes are supported:

_ dict__
name

5.2.22. Classes and Class Instances

Classes and class instances are supported.

e / ey jagl——=~

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 56 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.23. Function Objects

Function objects and function call are supported.

5.2.24. Method Objects
Method objects are supported.

5.2.25. Code objects

Code objects are supported.

5.2.26. Type Objects
Type objects are supported.

5.2.27. Null Object
Null object is supported.

5.2.28. Ellipsis Object
Ellipsis object is supported.

5.2.29. NotImplemented Object

NotImplemented object is supported.

5.2.30. Internal Types: Frame Objects

Frame objects are supported.

5.2.31. Internal Types: Traceback Objects

Traceback objects are supported.

5.2.32. Slice Objects

Slice objects are supported.

: s sl /" R W e _¥

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 57 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.33. Built-in Exceptions

The following built-in exceptions are supported:

BaseException
Exception
StandardError
ArithmeticError
BufferError
LookupError
EnviromentError
AssertionError
AttributeError
EOFError
FloatingPointError
GeneratorExit
I0Error
ImportError
IndexError
KeyError
KeyboardInterrupt
MemoryError
NameError
NotImplementedError
OSError
OverflowError
ReferenceError
RuntimeError
Stoplteration
SyntaxError
IndentationError
TabError
SystemError
SystemEXxit
TypeError
UnboundLocalError
UnicodeError
ValueError
ZeroDivisionError

5.2.34. Built-in Modules: marshal
Built-in marshal module is supported with the following functions:

dump
load
dumps

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 58 of 74

loads

The following constant is supported:

| version

5.2.35. Built-in Modules: imp

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Built-in imp module is supported with the following functions:

find_module

get_magic

get_suffixes

load_module

new_module

lock_held

acquire_lock

release_lock

The following constants are supported:

PY_SOURCE

PY_COMPILED

C BUILTIN

PY_FROZEN

5.2.36. Built-in Modules: _ast

Built-in _ast module is supported.

5.2.37. Built-in Modules: __main__

Built-in __main__ module is supported.

5.2.38. Built-in Modules: __ builtin_

Built-in __builtin__ module is supported.

e 0 / [g __.__Lﬂf\/

_-L

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 59 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.39. Built-in Modules: sys

Built-in sys module is supported with the following functions:

_clear_type_cache
_current_frames
displayhook
exc_info
exc_clear
exepthook
exit
getrefcount
getrecusionlimit
getsizeof
_getframe
setcheckinterval
getcheckinterval
setprofile
getprofile
setrecusionlimit
settrace
gettrace
call_tracing

The following variables are supported:

stdin
stdout
stderr
_ stdin__
__stdout
__stderr__
__diplayhook
__excepthook
version
hexversion
subversion
_mercurial
dont_write_bytecode
api_version
copyright
platform
executable
prefix
exec_prefix
maxsize
maxint
py3kwarning
float_info
long_onfo
builtin_module_names
byteorder
warnoptions
version_info
flags

float_repr_style

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

argv
exitfunc
last_type
last_value
last_traceback
modules
meta_path
path
path_hooks
path_importer_cache
tracebacklimit

5.2.40. Built-in Modules: exceptions

Built-in exceptions module is supported.
See Built-in Exceptions paragraph.

5.2.41. Built-in Modules: gc

Built-in gc module is supported with the following functions:

enable
disable
isenabled
collect
set_debug
get_debug
get_objects
set_threshold
get_count
get_threshold
get_referrers
get_referents
is_tracked

The following variable is supported:

| garbage

The following constants are supported:

DEBUG_STATS
DEBUG_COLLECTABLE
DEBUG_UNCOLLECTABLE
DEBUG_INSTANCES
DEBUG_OBJECTS
DEBUG_SAVEALL
DEBUG_LEAK

i i
“ ¥
PRI —

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 61 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.42. Built-in Modules: _warnings

Built-in _warnings module is supported.

5.2.43. Built-in Modules: _md5

Built-in _md5 module is supported:

5.2.44. Built-in Modules: binascii

Built-in binascii module is supported with the following functions:

a2b_uu
b2a_uu
a2b_base64
b2a_base64
a2b_qp
b2a gp
a2b_hgx
rledecode_hgx
rlecode_hgx
b2a_hgx
crc_hgx
crc32
b2a_hex
hexlify
a2b_hex
unexlify

The following exceptions are supported:

Error
Incomplete

5.2.45. Built-in Modules: sre

Built-in _warnings module is supported.

5.2.46. Built-in Modules: _weakref

Built-in _weakref module is supported.

5.2.47. Built-in Modules: _symtable

Built-in _symtable module is supported.

5.2.48. Built-in Modules: _functools
Built-in _functools module is supported.

L =

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 62 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.49. Built-in Modules: _socket

Built-in _socket module is supported with the following functions:

socket
gethostbyname
gethostbyname_ex
gethostbyaddr
ntohs
ntohl
htons
htonl
inet_aton
inet_ntoa
getaddrinfo
getnameinfo
getdefualttimeout
setdefualttimeout

The following exceptions are supported:

error
herror

gaierror

timeout

The following constants are supported:

has_ipv6
AF_INET
AF_UNSPEC
INADDR_ANY
INADDR_BROADCAST
IPPROTO_IP
IPPROTO_TCP
IPPROTO_UDP
IP_ HDRINCL
IP_TOS
IP_TTL
MSG_DONTWAIT
SHUT RD
SHUT RDWR
SHUT_WR
SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOL_SOCKET

SO_ACCEPTCONN
SO_BROADCAST
SO_ERR
SO_KEEPALIVE
SO_LINGER
SO_RCVBUF
SO_RCVTIMEO

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

SO_REUSEADDR
SO_SNDBUF
SO_TYPE
TCP_MAXSEG
TCP_NODELAY
Al_ADDRCONFIG
Al ALL
Al_CANONNAME
Al DEFAULT
Al_MASK
Al_NUMERICHOST
Al_PASSIVE
Al_VAMAPPED
Al VAMAPPED_CFG
EAI_ADDRFAMILY
EAI_AGAIN
EAI_BADFLAGS
EAl_BADHINTS
EAI_FAIL
EAl_FAMILY
EAI_MEMORY
EAI_NODATA
EAI_NONAME
EAI_PROTOCOL
EAI_SERVICE
EAI_SOCKTYPE
EAI_SYSTEM
NI_DGRAM
NI_MAXHOST
NI_MAXSERV
NI_NAMEREQD
NI_NOFQDN
NI_NUMERICHOST
NI_NUMERICSERV

The following non standard constant is supported:

| SO_CONTEXTID |

Socket objects support the following methods:

| accept

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 64 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

bind
close
connect
connect_ex
fileno
getpeername
getsockname
getsockopt
listen
recv
recv_into
recvfrom
recvfrom_into
send
sendall
sendto
setblocking
settimeout
gettimeout
setsockopt
shutdown

Socket objects support the following attributes:

family
type
proto

timeout

5.2.50. Built-in Modules: time
Built-in time module is supported with the following functions:
time
clock

sleep

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.51. Built-in Modules: posix

Built-in posix module is supported with the following functions:

stat
unlink
remove
rename
open
close
closerange
Iseek
read
write
fstat
isatty
strerror

The following variable is supported:

| environ

The following exception is supported:

| error

The following constants are supported:

F OK
R OK
W _OK
X_OK

5.2.52. Built-in Modules: thread

Built-in thread module is supported with the following functions:

start_new_thread
exit
allocate_lock
get_ident
stack_size
(raises exception)

Lock objects support the following methods:

acquire
release
locked

The following exception is supported:

| error

1 .‘ 8| __' l \ 4 \,'I": s

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 66 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.53. Built-in Modules: signal
Built-in signal module is supported with the following functions:
signal
getsignal

The following constants are supported:

SIG_DFL
SIG_IGN

The following non standard constants are supported:

SIGMDM
SIGMDM?2

5.2.54. Built-in Modules: errno
Built-in errno module is supported with the following variable:

| errorcode |

5.2.55. Built-in Modules: cStringlO

Built-in cStringlO module is supported with the following function:

| StringlO |

The following objects are supported:

InputType
OutputType

e 0 A g it *——-—Lﬂf\/ 5

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 67 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

5.2.56. Library Modules

A small collection of standard Python modules written in Python (not built-in) is available.
These .py files are mostly identical to the ones available for PC with minor changes.

0s.py

posixpath.py

stat.py

genericpath.py

socket.py

functools.py

types.py

threading.py

hashlib.py

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 68 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

6. Python non standard functions
6.1. _socket non standard functions
6.1.1. Non standard socket option flag: SO_CONTEXTID

The following non standard constant is supported:
| SO_CONTEXTID |

It is the socket option flag used to link a socket object to a context identifier after GPRS
Context Activation procedure.

NOTE:

Context Activation procedure can be obtained using AT+CGDCONT and AT#SGACT
commands on MDM or MDM2 interface.

All socket objects must be linked to a context identifier.

In the following example

import socket
s = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_CONTEXTID, 1)

a socket object is created and then linked to context identifier number one.

NOTE:

There is a firewall always active on module.
Without firewall proper configuration socket methods might not work as expected.

Firewall can be configured using AT#FRWL command on MDM or MDM2 interface.

Sockets used by standard functions (e.g. gethostbyname) are silently linked to context
identifier number one.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 69 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

6.2. signal non standard functions

6.2.1. Non standard signal: SIGMDM

The following non standard constant is supported:
| SIGMDM |

It is the signal number linked to the event of presence of data in MDM.read buffer.

Example:
signal.signal(signal.SIGMDM, MDMReadHandler)

6.2.2. Non standard signal: SIGMDM2

The following non standard constant is supported:
| SIGMDM2 |

It is the signal number linked to the event of presence of data in MDM2.read buffer.

Example:
signal.signal(signal. SIGMDM2, MDM2ReadHandler)

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 70 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

7. Python Notes

7.1. Memory Limits

In order to prevent memory error, in phase of execution of the script, we advise you to
consider the following limits:

o allocated memory for each variable;

e number of the variables.

The memory available on modules includes:

e 2 MB of Non Volatile Memory for the user scripts and data files;
e 2 MB RAM available for Python engine usage.

Some limits of the available NVM that affect file saving procedures and need to be
considered are listed below:

max number of files 16
open contemporary
max length of file
name

16 characters

It is highly recommended not to use the module as a data logger since all flash memories have
limited number of writing and deleting cycles.

71.2. Other Limits

Some other Python limits that should be considered while developing your Python script in
order to find an appropriate solution are listed below:

e Python scripts should not interfere with GSM/GPRS standard operations, for this
reason Python scripts run at lower priority;
e GPIO polling frequency from Python scripts might be slower than expected.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 71 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

8. Python Script Emulation on PC

8.1. Executing the Python script on PC

The steps required to have a script executing by the Python engine on PC in a similar way as
on the Telit module are:

e install Python on PC;

o install optional serial package on PC;

e copy on PC Python modules that emulates custom built-in modules (MDM, MDM2,
SER, GPIO, GPS);

e run the Python script.

8.1.1. Install Python

Download Python 2.7.2 installation from
http://www.python.org/
http://www.python.org/download/releases/2.7.2/
and install it.

8.1.2. Install optional serial package

Download PythonWin installation related to Python 2.7 from
http://sourceforge.net/projects/pywin32/files/pywin32/

and install it.

Download pyserial package installation from
http://sourceforge.net/projects/pyserial/files/pyserial/

and install it.

8.1.3. Copy Python modules

A collection of Python modules written in Python (not built-in) that emulates custom built-in
modules is available.
MDM.py
MDM2.py
SER.py
GPIO.py
GPS.py
Copy these files on PC.
These modules make the difference between running the script on PC and on module.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 72 of 74

http://www.python.org/�
http://www.python.org/download/releases/2.7.2/�
http://sourceforge.net/projects/pywin32/files/pywin32/�
http://sourceforge.net/projects/pyserial/files/pyserial/�

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

8.1.4. Run the Python script

Run the Python script on PC.

Main differences between executing the Python script on PC compared to module are:
e script speed execution;
o different behaviour between emulating modules and custom built-in modules.

3 A s » —— \ 'y
3 S ! (E
> 7 by 5 A | . [
’ o A I L= | 5L I 2 . e
- S - —
g " jarae

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 73 of 74

Telit

HE910 Easy Script in Python
80378ST10106A Rev.0 - 2012-02-27

Q. Document History
Revision Date Changes
0 2012-02-27 First issue

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved. Page 74 of 74

	Introduction
	1.1. Scope
	1.2. Audience
	1.3. Contact Information, Support
	1.4. Document Organization
	1.5. Text Conventions
	1.6. Related Documents

	2. Easy Script Extension - Python interpreter
	2.1. Overview
	2.2. Python 2.7.2 Copyright Notice
	2.3. Python
	2.4. Python implementation description
	2.5. Python supported features

	3. Python Script Operations
	3.1. Executing the Python script
	3.1.1. Write the Python script
	3.1.2. Compile the Python script
	3.1.3. Download the Python script
	3.1.4. Enable the Python script
	3.1.5. Run the Python script
	3.1.6. Read the Python script
	3.1.7. List saved Python scripts
	3.1.8. Delete the Python script

	3.2. Debug Python script

	4. Python Build-in Custom Modules
	4.1. MDM built-in module
	4.1.1. MDM.send(string, timeout)
	4.1.2. MDM.read()
	4.1.3. MDM.sendbyte(byte, timeout)
	4.1.4. MDM.readbyte()
	4.1.5. MDM.sendavail()
	4.1.6. MDM.getDCD()
	4.1.7. MDM.getCTS()
	4.1.8. MDM.getDSR()
	4.1.9. MDM.getRI()
	4.1.10. MDM.setRTS(RTS_value)
	4.1.11. MDM.setDTR(DTR_value)

	4.2. MDM2 built-in module
	4.2.1. MDM2.send(string, timeout)
	4.2.2. MDM2.read()
	4.2.3. MDM2.sendbyte(byte, timeout)
	4.2.4. MDM2.readbyte()
	4.2.5. MDM2.sendavail()
	4.2.6. MDM2.getDCD()
	4.2.7. MDM2.getCTS()
	4.2.8. MDM2.getDSR()
	4.2.9. MDM2.getRI()
	4.2.10. MDM2.setRTS(RTS_value)
	4.2.11. MDM2.setDTR(DTR_value)

	4.3. SER built-in module
	4.3.1. SER.send(string)
	4.3.2. SER.read()
	4.3.3. SER.sendbyte(byte)
	4.3.4. SER.readbyte()
	4.3.5. SER.sendavail()
	4.3.6. SER.set_speed(speed, <char format>)
	4.3.7. SER.setDCD(DCD_value)
	4.3.8. SER.setCTS(CTS_value)
	4.3.9. SER.setDSR(DSR_value)
	4.3.10. SER.setRI(RI_value)
	4.3.11. SER.getRTS()
	4.3.12. SER.getDTR()

	4.4. GPIO built-in module
	4.4.1. GPIO.setIOvalue(GPIOnumber, value)
	4.4.2. GPIO.getIOvalue(GPIOnumber)
	4.4.3. GPIO.setIOdir(GPIOnumber, value, direction)
	4.4.4. GPIO.getIOdir(GPIOnumber)
	4.4.5. GPIO.getADC(adcNumber)
	4.4.6. GPIO.setDAC(enable, value)
	4.4.7. GPIO.setVAUX(vauxNumber, enable)
	4.4.8. GPIO.getAXE()
	4.4.9. GPIO.setSLED(status, onDuration, offDuration)
	4.4.10. GPIO.getCBC()

	4.5. GPS built-in module
	4.5.1. GPS.powerOnOff(newStatus)
	4.5.2. GPS.getPowerOnOff()
	4.5.3. GPS.getActualPosition()
	4.5.4. GPS.getLastGGA()
	4.5.5. GPS.getLastGLL()
	4.5.6. GPS.getLastGSA()
	4.5.7. GPS.getLastGSV()
	4.5.8. GPS.getLastRMC()
	4.5.9. GPS.getLastVTG()

	5. Python standard functions
	5.1. Technical characteristics
	5.1.1. General

	5.2. Python supported features
	5.2.1. Operators, statements, functions
	5.2.2. Built-in Functions
	5.2.3. Built-in Constants
	5.2.4. Truth Value Testing
	5.2.5. Boolean Operations
	5.2.6. Comparisons
	5.2.7. Numeric Types: Integer, Long Integer and Floating Point
	5.2.8. Numeric Types: Integer and Long Integer
	5.2.9. Numeric Types: Floating Point
	5.2.10. Numeric Types: Complex
	5.2.11. Iterator Types
	5.2.12. Generator Types
	5.2.13. Sequence Types: String, List, Tuple, Bytearray, Buffer and Xrange
	5.2.14. Sequence Types: Unicode
	5.2.15. Sequence Types: String
	5.2.16. Mutable Sequence Types: List and Bytearray
	5.2.17. Set Types: Set and Frozenset
	5.2.18. Mapping Types: Dictionary
	5.2.19. File Objects
	5.2.20. Memoryview Objects
	5.2.21. Module Objects
	5.2.22. Classes and Class Instances
	5.2.23. Function Objects
	5.2.24. Method Objects
	5.2.25. Code objects
	5.2.26. Type Objects
	5.2.27. Null Object
	5.2.28. Ellipsis Object
	5.2.29. NotImplemented Object
	5.2.30. Internal Types: Frame Objects
	5.2.31. Internal Types: Traceback Objects
	5.2.32. Slice Objects
	5.2.33. Built-in Exceptions
	5.2.34. Built-in Modules: marshal
	5.2.35. Built-in Modules: imp
	5.2.36. Built-in Modules: _ast
	5.2.37. Built-in Modules: __main__
	5.2.38. Built-in Modules: __builtin__
	5.2.39. Built-in Modules: sys
	5.2.40. Built-in Modules: exceptions
	5.2.41. Built-in Modules: gc
	5.2.42. Built-in Modules: _warnings
	5.2.43. Built-in Modules: _md5
	5.2.44. Built-in Modules: binascii
	5.2.45. Built-in Modules: _sre
	5.2.46. Built-in Modules: _weakref
	5.2.47. Built-in Modules: _symtable
	5.2.48. Built-in Modules: _functools
	5.2.49. Built-in Modules: _socket
	5.2.50. Built-in Modules: time
	5.2.51. Built-in Modules: posix
	5.2.52. Built-in Modules: thread
	5.2.53. Built-in Modules: signal
	5.2.54. Built-in Modules: errno
	5.2.55. Built-in Modules: cStringIO
	5.2.56. Library Modules

	6. Python non standard functions
	6.1. _socket non standard functions
	6.1.1. Non standard socket option flag: SO_CONTEXTID

	6.2. signal non standard functions
	6.2.1. Non standard signal: SIGMDM
	6.2.2. Non standard signal: SIGMDM2

	7. Python Notes
	7.1. Memory Limits
	7.2. Other Limits

	8. Python Script Emulation on PC
	8.1. Executing the Python script on PC
	8.1.1. Install Python
	8.1.2. Install optional serial package
	8.1.3. Copy Python modules
	8.1.4. Run the Python script

	9. Document History

