User Guide

AIMEL

6421B—ATARM—xx-xxx-11



ATMEL

1-2 I O SAM-BA User Guide
6421B-ATARM—xx-xxx-11




Section 1

1] (oo 18 Tox (o] o IR 1-1

S S T o 1= PO PT PRI 1-1

1.2 KEY FRAUIES ... e s e e s e e e snreee s 1-1
Section 2

1 1=y 7= 1 = 1SR 2-1

2.1 Windows® Vista and WINAOWS® 7 .......ccoeoiieicieiiieiiieie e e e e e e e e e s e eeeeeaa e e 2-1

2.2 Installing and Using Two Versions in Parallel ... 2-1

2.3 INStalliNg SAM-BA ... e e e e e ab e e e s sanreeeaeeann 2-1
Section 3

SAM-BA ArChItECIUE ...ttt 3-1

G 70 B T o1 1= o) - PP 3-2

G T T B~ ] o] 1= =38 D =T (] o2 3-2

T I~ o (o Lo B (= Tox (o] VPP PTPRPR 3-2

T G B |4V 1 =Ted (o o PP PPPPRPRPR 3-2

T B A= e T g o (=TS I T (=Y (o YOS 3-2

T I ST (o I 1 o3 1 =Te7 (o PP PTPPPR 3-2

B.1.6  SAMEDA.EXE .. 3-2
Section 4

[ ToT=T o [ @701 o1 o T=Y o3 1] o ISP 4-1

e B 0 101 X @ o =3 1 T o TS 4-1

4.1.1  USB CDC Driver Installation ...........coociiiiieiiiiiiie i esieeee s seee e 4-1

4.2  JLINK/SAM_ICE CONNECLION ....eviiiieeiiiiiee ettt ettt ettt e e st e e e e s aneeee e s snreeeeeens 4-8

421 J-LINK SPEEA ..ottt 4-8

4.2.2 Updating J-Link/SAM-ICE SOftWare..........cccoiiiiiiiiiiie e 4-9

423 JTAG Communication LiNK .........cooiiiiiiiiiiiiiiee et e s 4-9

V3¢ T @7 11 I = o o o 7o o o T=Tox (o o SRR 4-10

N O] o1 o [=To1 g B 11 Yoo o1 1= Yo: U SRR 4-10
Section 5

RUNNING SAM-BA . ... e e e s e e e e e e nnnees 5-1

5.1 EXECULE SAM-BA ..ot a e e e e e e a i rraaaaaes 5-1

L2 S 1= 1= o: o 7] o 1= ) o o PRSP 5-1

5.2.1 Optional J-LINK Speed Selection When Connecting with J-LINK ...................... 5-2

5.3 Select Target BOAr ........ocueiiiiiiiiiie ettt s a e 5-3

5.4 Customize Low level INtialization ............coooiiiiiiiiiiiiie e 5-3

5.4.1 User Interface of Low Level Initialization SAM-BA .........cccoiiiiiiiiiii e 5-3

5.5 SAM-BA TaSK....iiiiiiiiiie ettt e e ettt e e e ettt e e e e et e e e s st e e e e e aabaeeaeeaaarereeeeabaeeaeeaaraeaaeeanraeaeeanns 5-4

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



Section 6

SAM-BA GUIL ...t e st r e e e eaaaaaaeeeeeeeanaaaanas 6-1
6.1 SAM-BA Main WINAOW .......uuuiiiiiiiiiieeie it e e e e e e e e s e s s seeteeee e e e e e e e e e ss s s nsnnreeeeeeeeeeeeesanan 6-1
6.2 MemOry DiSPIay AFBa.......eciii ittt 6-1
6.2.1  Read Memory CONENt..........uuiiiiiiiiie e e e e e e e 6-2
6.2.2  Edit Memory Content ........cooo i 6-2
6.3 MemOry DOWNIOAA AFCa.......coiiuiiiieiiiiiee ettt e e e e e e aneeas 6-2
LS 20C T H U 1 o) (oY= T = T 1= TS 6-3
LS T~ B o 1Y o (o =T = T | S 6-3
6.3.3 Compare Memory With @ File .........coiiiiiii e e 6-3
6.4  Script File FUNCHONAIILY .......uvveiiiiiieeee e e e e e e e e e e e e e e enanes 6-4
6.4.1 Start/ Stop / Reset ReCOIrdiNg ......cooouueiiiiiiiiiiie e 6-4
6.4.2 Editing the Script File ... e 6-4
6.4.3 Execute the Script File ... e 6-4
Section 7
SAM-BA TCL COMMEANGS ....uttiiiiiiiiiiiiiieaaeeeee e s e e e e e e e e e ae e e e e e e e e e e e s sssaanas 7-1
7.1 SAM-BA Scripting ENVIFONMENT ......cciuiiiiiiie ittt ettt ee e seee e s neee s 7-1
7.2  SAM-BA BUilt-in COMMANGS ......ccuriiiiiiiiiiie et 7-2
7.2.1  Command DESCHIPLION ......coiiiiiiiiiiiiiiie ettt 7-2
7.2.2  Additional ComMmMAaNG .........cciiiiiiiiiiiiiiee e e e e e e e s e e s ennraeeeeeane 7-4
C T == Ly ] ][I o 0] (=S 7-5
Section 8
SAM-DA.AIL... et e e e e e e e e e e e e e e e e e 8-1
S I N o B ¥ T (o o PP EPPPTPERPR 8-1
8.1.1  ATOTBOOL_SCaAN.....uiiii ittt enre e s 8-1
< T = A S T Yo @ o= o USSP 8-2
ST I T N e 1 = oo A [ Y= YRR 8-2
8.1.4  ATITBOOL_WHLE_INt o e 8-3
8.1.5 ATI1BOOt_WHEE_ShOIt ... .. e e 8-3
8.1.6  ATI1BOOt_WHIE_BYLE ...oeieeiieeie e 8-3
8.1.7  ATI1BOOt_WHrite_Data .......ccooceiieeiiiiiieee e e 8-4
8.1.8  AT91B0Ot_Read_INt ... 8-4
8.1.9  AT91BO0O0t_REAU_SNOM....ciiiiiiiiiee et sree e e e eaes 8-5
8.1.10 AT91B0O0Ot_REAA_BYIE ...oiiiiiie e 8-5
8.1.11 AT91B0o0t_Read_Data......cccuuieiiiiiiieee e 8-6
T I 2 N e 1 = oo A T TSRS 8-6
8.1.13 AT91B0Ot_JIINKSEISPEEA.......eeeiiieeieei e 8-6
8.2  APIUSING SamM-Da.dll.......oooiiiiiiii e e 8-7
8.2.1 0l _WIth_MFC .. e 8-7
i A_ IIIIEL@ SAM-BA User Guide

6421B-ATARM—xx-xxx-11



8.2.2  0le_WIhOUL_MFC ... i 8-8

8.2.3  LauNCh APPIELS ... 8-8
Section 9
Y o] o] 1 £ PP PPPPPPPPP 9-1
S T Y o] o] 1= AT Lo g {0 XSS 9-1
9.2 APPIET STAMUD oo 9-2
9.3  RUNIME OPEIratioNS .....cocuiiiiiiii ettt ettt et e be e e s b e e e sare e ene 9-4
S B Y o] o] 1= 1Y =1 o T 9-4
9.5 BUIIA APPIEES .o 9-6
9.5.1  Required Tools for Compilation APPIEtS ........ccceeriiiiiiiiiiiie e 9-6
9.5.2  MBKE ... 9-6
9.6 Applets Initialization and USAge ........c.ueeiiiiiiiiiieeiie e 9-6
9.6.1  Memory Programming PriNCIPIE .........oooiiiiiiiiiiii e 9-6
9.6.2  EXIernal MEMOIY ...coco i 9-7

Section 10

SAM-BA TCOL SCIIPIS ..ttt e e e e e e e e e e e e e e e e e e s 10-1
10.1  SCrIPLS OVEIVIEW ...ttt ettt ettt e rab e e s st e e e sabe e e e be e e sabe e e eabeeeeanes 10-1

10.2 Board DeSCrPHION File......uuuuieiiieeieie ettt s e e e e e e e e e e e e e e e e e eeeeeeeenees 10-2
10.2.1 Memory ScCripts EXamPIe: ......couuiiiiiiiiiie e 10-2

10.2.2 NAND Flash Module Declare EXxample............ccooiiiiiiiiiiiiiieiieee e 10-3

10.2.3 NAND Flash Memory Scripts EXample ........ccccoveeeiireeii e 10-3

Section 11

NAND Flash with PMECC Interface .........cccccuuuiiiiiiiiiiiieeeeeeeeeee 11-1
11.1 NAND PMECC INTEIACE ....eiiiiieiiiiiie ittt ettt et 11-1
11.1.1 Pmecc Configuration ..........coooiuuiiiiiiiiiiee et 11-1

11.1.2 Enable OS PMECC Parameters...........ueiiiiiiiiiiiiiiee et 11-3

11.2 PMECC Header Configuration in Command Line.........c.cocciiiiiiiiiinieieieeee e 11-4

11.3 NAND FIaSh BOOL ... e e 11-5

11.4 Example of TCL Script for NAND FIash .......coooiiiiiii e 11-5

Section 12

SAM-BA CUSIOMIZALION .....eviiieeiiiiiieeeeee e e e e e e 12-1
12.1 Add @ NEW BOAIT ...t e e s e e e e e e e e e e s e e e eeee s 12-1

12.2  Modify Main OSCIllAtOr....cccoiieiiii e e 12-2

12.3 MOIfY PINOUL ...t e e e e e e e 12-4

12.4 Check Point When Failed to Access Customer External MemMory ......ccccccceeeeveicevvvenneen. 12-6
12.4.1 SDRAM/DDRAM ACCESS -..uutteteiiiieeiaaaieeieiaeiieieeteeeaaaaeesssassanssneeeeeeeeaaaeessaasasannns 12-6

12.4.2 NAND FIaSh ACCESS ... .oiiiiiieee ettt 12-6

12.4.3 DataFlash & Serial Flash ACCESS .........uoiiiiiiiiiiiiie e 12-6

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



12.4.4 NOR FIASH ACCESS ...cevvneiiiiietee ettt e e et e e e s e e e e e e e b e e s s reaaaanss 12-7
12.4.5 EEPROM ACCESS.....uiiieeeiiieeee ettt et ettt e e e et e e e et s e e eaereraeseesaareeenarereen 12-7

Section 13

(O 0 [ 0] (1 1 7= (o PP PPUPIPORPPRRPR 13-1
LS T T O I 1 o [ 01 (= ¢ = Lo RO RSPR 13-1
G 702 I I i Y- Lo OSSP 13-1
LS TS T O I = T - TSRS 13-2

Section 14

REVISION HISTOMY ... e e e e e 13-1
14,1 ReVISION HISTOIY ...eoiiiieii e e e 13-1

A_ IIIIEL@ SAM-BA User Guide

iv

6421B-ATARM—xx-xxx-11



ATMEL

Y

Section 1

Introduction

Welcome to SAM-BA® User Guide. The purpose of this guide is to provide users with detailed reference
information that can help them to use the tools to best suit their application requirements. This guide also

gives the users helpful guidance to customize new boards or programming algorithm for a new device
with maximum efficiency.

1.1 Scope

The SAM Boot Assistant (SAM-BA®) software provides a means of easily programming different Atmel
AT91SAM ARM® Thumb® -based devices. It runs under Windows® XP, Windows® vista and Windows®
7.

The latest version of SAM-BA®is available on the ATMEL® web site, at the following address:

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3883.

1.2 Key Features

Performs in-system programming through JTAG, COM port or USB interfaces
Provides both AT91SAM embedded flash programming and external flash programming solutions
May be used via a Graphical User Interface (GUI) or started in batch mode from a command line

Runs under Windows® XP, Windows® Vista 32-bit, Windows® Vista 64-bit, Windows® 7 32-bit and
Windows® 7 64-bit

Memory and peripheral display content
User scripts executable from SAM-BA Graphical User Interface or a shell

SAM-BA User Guide 11

6421B-ATARM—xx-xxx-11



Introduction

ATMEL

1-2 I O SAM-BA User Guide
6421B-ATARM—xx-xxx-11




ATMEL

Y ()

Section 2

Installation

Installation is automatic using the <sam-ba_X.Y.exe> install program (X.Y is the version number).

2.1 Windows® Vista and Windows® 7

SAM-BA® supports Windows® XP, Windows® Vista and Windows®7. Windows® Vista has a security
mechanism called UAC (User Access Control). It is recommended to install SAM-BA® with administrator
privileges. If other users in the system need to use SAM-BA®, it is better to modify the installation path to
somewhere else, rather than Program Files.

2.2 Installing and Using Two Versions in Parallel

If users want to install two versions of SAM-BA® on the same computer, they must make sure the new
version is not installed in the same directory as the old version to avoid confusion. It is also recom-
mended to uninstall the old version before installing SAM-BA.

2.3 Installing SAM-BA
m Disconnect the target board from the computer.

m Double click <sam-ba X.Y.exe> (X.Y is the version number).

Figure 2-1.  Installation Welcome Page
SIS E|

‘Welcome to the SAM-BA v2.11 rcd
Salup Wizard

Thes vz vl guade you Chwough the restakaton of SAMHEA
¥2.11 red.

rerebed Hhat yeas chorse o olber sppieations

Sy, Thes vl mabe € possible Lo update

g 5
Télrt, ystem s wihdut haineg 1o rebadt your
ek Nt to corknue,

SAM-BA®

*

M
efon
e

SAM-BA User Guide 2-1
6421B—ATARM—xx-xxx-11




Installation

m Accept the license agreement when prompted.

Figure 2-2. Installation License Page

B SAMBA 211 Setup E 8 =l T
Licerse Agreement
Pl reviews e Berrrie Leras beborn irialieng SAMABA 42,11,
F0F TWRHL LICLNGE AGREEMENT :I

mportan - Read carshay

i . byl Ly agrmvmcswet ek vemers Absomd Conpron slion, rhatig 26
eutradanes and aifbates ("Atmel’) snd You [You'). In rsturn For scountg

tware
feripherals (“Software™), You agres to the Followng terms snd conditaons,

1. Grark of Licerne. =|

] aoreement, chck 1 Ao . You must seoept Ehe
agrooment bo imial SAMABA V2,11,

s [om ] _oma |

m Read release note and select <Next> to continue.

Figure 2-3. Installation Release Note Page

i 51-Ba w211 Setup = =)=

Licenie Agieement
e B - il
Risleon ruste

[The SaW Bost Apsivant (SAM-BA} sofvense prevides & makst of saellr
progranaing dsffarast tmal

ATHLIAN devices Ther ate bazed on a cosson desasic Linked Libsars .|

f you accept the terin of the agrestment, dhoh. 1 Agre to conknue, You must scoein L
apesmant to inatal SAMBA 211,

< Back Mt > fancel

m Accept the default installation directory or specify a directory of choice, and select <Next>.

Figure 2-4. Installation Directory Page

1B 5AM-0A vz 11 Setup Slni .|

Chooar Install Location
Checese thee fkder in which to rtall SAM-BA vZ.11.

2.1 To install ek
Browrsn and sninct ancther folder. Chek Nest bo continun.

Space requred: 53.0M8
Space avalable: 2168

<o [ o> | _cona

ATMEL

2-2

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



Installation
m Click <Install> to begin installing SAM-BA.

Figure 2-5. Installation Menu Page

B 54584 v2.11 Setup E =1z x|

Chuose Start Mo Folde
Chatse & Start Meru folder For the SAMAEA 211 shortouts.
Sednct.

Vs shortouts, You

the Start it
i rber it ruean ko oot i reves fokdo

ccessones

ctvefiar 5.10.0 Buld 1004

ctvestate ActrveTd 8.4,19,3
‘ool

anm
ATHEL Coxprn lion)
=T

Cisco Systarms VN Chert =

m |nstalling.

Figure 2-6. Installation Start Page

(050 onziisew iz

Inztalatien Comgiluta
Setup was completed sutoessfully.

Conyladed

Extract: OLE_wattout_MFC i B

Estract: Stelthe.cpp

Catract: St

Eatisti applet.h

Cukpa leleber: C:1Prencram Fle|ATHEL Corporabiei|SAM 84 v2.1 Hsarnbsa o snage.

Regaterng: C:\Program FlesIATMEL Corporstion|SAMBA v2.1 1idrvizam ba. il

Target was peepended to PATH

i okder CiWINGCW Sl

Eatuach: sl 74, 1od

Estract: sime.124_prke i

Qutpue Fokder: Ci\Progrem PlIATHEL ComporstionSAM-DA v2-11

Comphstad j

m Set shortcut and quick launch, and select <Next>.

Figure 2-7. Installation Shortcut Page

6 0 (Create shortcuts

| SAM-BA Shertouts

=loix

[ Desttop.
[ uick Loanch Bar

o [ ] |

ATMEL

SAM-BA User Guide S O 2-3

6421B-ATARM—xx-xxx-11




Installation

m Installation is complete.
Figure 2-8. Installation Finish Page
(& v crar e SSTE
Completing the SAM-BA v2.11 re2
Setup Wizard
% B s sty oo s ekt o o
= Rkt row
ATMEL

7 Tt to marusshy rebook later
SAM-BA"

&>

P I

SAM-BA User Guide
6421B-ATARM—xx-xxx-11




ATMEL

Y

Section 3
SAM-BA Architecture

SAM-BA provides tools for programming all Atmel ARM-based devices microcontrollers, including
SAM3, SAM7 and SAM9. They are based on a common dynamic linked library (DLL), sam-ba.dll. It is an
OLE COM component distributed under a DLL allowing automation tool.

It is also possible to execute the SAM-BA functions in command lines via a TCL shell. An intermediate
DLL (AT91BOOT_TCL.DLLI) is used to transform TCL commands to the sam-ba.dll. Several communi-
cation links are available such as USB, serial port (RS232) or JTAG.

The SAM-BA has two parts, the host and the target device, as shown in Figure 3-1. The host part runs
on computer. It sends programming files and programming instructions over a download cable to the tar-
get. The target part is a hardware design, running in the ARM® Thumb®-based devices. It accepts the
programming data— content and required information about the target external memory device— sent
by the host, and follows the instructions to write/read data to/from the external memory device.

Figure 3-1. SAM-BA Architecture

Board user API

external memory

'\ applets command line
Device / TCL-SH
1 sam-ba GUI
applets
| I at91boot_tdl.dll

internal
memory
sam-ba.dll

jlinkarm.dll usbser.sys com drivers

\% \% %

DBGU ITAG JLINK COM port

U $"5
— ﬂ NSNS
I3l

COM

port DBGU

SAM-BA User Guide 3-1
6421B—ATARM—xx-xxx-11




SAM-BA Architecture

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3-2

Contents

applets Directory

All files located in the applet directory are the source codes of all applets.

doc Directory
m SAM-BA User Guide: this document.
m releasenote.txt: release notes.
m readme.txt: readme.

drv Directory

AT91Boot_TCL.dIl: an intermediate DLL is used to transform TCL commands.

sam-ba.dll: an OLE COM component for SAM-BA.

atm6124_cdc.inf: Windows USB CDC Driver Setup File for ATMEL AT91 USB to Serial Converter.
JLinkARM.dII: a DLL for using J-Link / J-Trace with third-party programs from Segger.
SAMBA_DLL.tlb: type library file of sam-ba.dll.

examples Directory
m samba_dll_usage_VCB6 directory
— Example OLE_MFC project under Visual C++ 6.0
— Example OLE_without_MFC project under Visual C++ 6.0
m samba_tcl_script
— Example tcl script file to access NAND flash

tcl_lib Directory
All files located in tcl_lib directory are tcl/tk scripts and applet binary files for programming devices.
All the files required by running SAM-BA are in this folder.
Files are organized as below:

m A common files directory, with all generic TCL scripts used to load applets, communicate with applets,
and to perform read/write operations.

m Several board specific folders (for example, folder at91sam9263-ek\ for SAM9263), containing the
applet binary files and the TCL file used to describe the SAM-BA GUI for each board (what memory is
on the board, what is the applet name for each memory ...).

sam-ba.exe

Executable file of SAM-BA.

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



ATMEL

Y

Section 4

Board Connection

SAM-BA scans active USB connections with AT91SAM based boards, and it is mandatory to connect
the target to the PC before launching SAM-BA. When SAM-BA starts, the communication interface to be
used is chosen. All connected devices are listed in the Select the connection list. Connections are
described by the following strings in the list:

m \USBserial\COMxx for USB connected devices

— \usb\ARMx (compatible name for SAM-BA version earlier than 2.11)
m \jlink\ARMx for SAM-ICE/JLink connected devices
m COMxx for available COM ports (Support COM port number lager than ‘9’)

Notes:
1. To select another board, SAM-BA must be restarted.
2. xx in COMxx specifies a COM port number.

Communication link can be serial COM port, USB or JTAG. To use USB and COM port link, SAM-BA
needs SAM-BA Boot to be running on the target (it is part of the ROM Code of each device). So the chip
must boot on the ROM code and a bootable program must not be found on any external memory such as
Dataflash® or Nandflash. To use the JTAG link with a SAM-ICE or J-Link probe, a SAM-BA Boot like
application is loaded by the probe into the internal SRAM of chip after the probe has performed a reset of
the device.

4.1 USB Connection

SAM-BA can communicate with ATMEL ARM-based devices via a USB CDC Serial communication
channel, on Microsoft Windows® XP, Windows® Vista and Windows® 7. The device uses USB Communi-
cation Device Class (CDC) drivers to take advantage of the installed PC RS-232 software to talk over
USB. The CDC class is implemented in all releases of Windows. The CDC document, available at
www.usb.org, describes a way to implement devices such as virtual COM ports. The Vendor ID is
Atmel’s vendor ID 0x03EB. The product ID is 0x6124. These references are used by the host operating
system to mount the correct driver. On Windows systems, the INF files contain the correspondence
between vendor ID and product ID.

4.1.1 USB CDC Driver Installation
CASE 1: It is my first time to install SAM-BA (never installed previous version of SAM-BA before).

The following steps are introduced based on Windows XP. However, they are very similar for the other
versions of OS.

m Connect the board to the computer via a USB port and power it on.
m The system finds a new hardware and asks the user to search a new driver for it.

SAM-BA User Guide 4-1
6421B-ATARM—xx-xxx-11




Board Connection
m Select to install software automatically, and then click <Next> button.

Figure 4-1.  Install USB Automatically

Welcome to the Found New
Hardware Wizard

This wizard helps pou install software for

ATS1 USE to Serial Converter

(“). 1f your hardware came with an installation CD
“SE2 o floppy disk. insert it now.

‘what do you want the wizard ta do?

@ Install the software automatically (Fiscommendsd)
© Iristall rarn 2 list or specific lacation [(Advanced)

Click Next to continue.

< Back I Next > I Cancel

m Click <Continue> to install.

Figure 4-2. USB Installing

[Friesised Hewe Haribmare

Fleasn wast while the wza installs the soltware

o ATHY USE ko Serial Corrrser

!E The soitware v ate inssaling fof this hardvane:
ATHI LISE o Senal Cornmser

Eu:nm“n-mnml:‘uummmn:m-
e e

P ..um..- I—ﬁl"-h-* |

|-=_|Ih that !Illnlln this istallatzon now ansd

contact
parted wm. Lmn basting.

STOP nvtoksion

Confinus Anyway

m Click <Finish> to complete the installation.

Figure 4-3. Complete USB Installation

Completing the Found New
Hardware Wizard

The wizard has finished installing the software for

rg ATH1 LUSE to Serial Canverter

Click Finish to close the wizard,

< Back I Finish I LCange|

ATMEL

4-2 I O SAM-BA User Guide

6421B-ATARM—xx-xxx-11




Board Connection

Case 2: | have installed SAM-BA 2.10 before, and the usb port is recognized as an ATMEL AT91xxxxx
Test Board on Windows XP.

That means a previous version of USB driver (atm6124.sys) has already been installed from previous
versions of SAM-BA. The users have to uninstall this driver first, or connect the board to another USB
port on the computer where the board will not be detected.

To uninstall a previously installed driver on a USB port, the users have to open the Windows Device

Manager tool (the following steps are introduced based on Windows XP. However, they are very similar
for the other versions of OS).

m Connect the board to the computer via a USB port and power it up.

m Select Control panel -> System -> 'Hardware' pane -> Device Manager, and expand the Universal
Serial Bus controllers folder.

Figure 4-4.  Universal Serial Bus in Hardware Management

(- ig System dewces

B- = Lniv
atmal24,3ys ATMEL AT91xxxxx Tesk Board

Generic USE Hub

Generic USE Hub

InteliR) 5 Series/3400 Series Chipset Family USE Enhanced Host Controller - 3834
InteliR) 5 Series/3400 Series Chipset Family USE Enhanced Host Controller - 3830
USE Composite Device

1USE Rook Hub

1USE Rook Hub

m Right-click on the atm6124.Sys ATMEL AT91xxxxx Test Board entry.

Figure 4-5.  Uninstall atm6124.sys

=N Gf-b Unwersal Serial Bus controllers

Generlc 1USE Hub Update Criver. ..

zeneric USE Hub Disable
InteliR) 5 Series/3400 Series Chipset - 36834

InteliR) 5 Series/3400 Series Chipset
USE Composite Device

IJ5E Ruook Hub Properties
1USE Rook Hub

Scan For hardware changes - 3|3

m Select <Uninstall> and confirm (the entry then disappears from the list).
m Power the board off.

To install the USB CDC Serial driver:

m Power the board on.

m The system finds a new hardware and asks the user to search a new driver for it.

SAM-BA User Guide A_ IIIIEL@

4-3
6421B-ATARM—xx-xxx-11




Board Connection

m Choose to install from a list or specific location (Advanced), and then click <Next> button.

Figure 4-6.

USB Installation in Special Location

Found New Hardware

ard

Welcome to the Found New
Hardware Wizard

This wizard helps you install softwars for.

USE Device

(+)If your hardware came with an installation CD
S or Hoppy disk, insert it now

‘what do pou want the wizard to do?

' Instal the software automatically (Recommended)

@ Instal from st or speoific location (Advancsd]

Click Next to continue.

< Back I Next » I Cancel

m Select the folder for SAM-BA installation location.

Figure 4-7.

Browse For Folder N

Select Location for USB Installation

Please choose your search and installation options.

Seleck the folder that contains drivers For your hardare,

* Search for the best driver in these locations

Use the check boxes below to limit or sxpand the default search, which includes local

2IXI| paths and removable media. The best driver found will be installed.

™ Search removable media (floppy, CO-ROM._)

¥ Include this lacation in the search

=l ) SAM-BA v2.11 -]
& ) applets
253 documentation
9 dre
B () samba_dl_usage_VC6
& () b

Lol

T view any subfolders, lick a plus sign above

e

m Click <Continue> to install.

Figure 4-8.

4-4

Start USB Installation

Pl

|C:\Program Filss\ATMEL Corporation\SAM -84 v2 11 = | Browse

" Dot search. | will choose the diver ta instal

Choose this option to select the device diver from a list. Windows does not guarantes that
the driver you choose will be the best match for your hardware

< Back Next » Cancel

ease wait while the wizard installs the software...

Hardware Installation

ATS1 USE to Serial Converter

has ot passed Windows Loga testing ta verily its compatbilty

with Windows XP. [Tell me why this testing is impartant.]

Continuing your installation of this software may impair
ze the conect operation of your system
cither immediately or in the future. Microsoft strongly < Back Hewts Caricel
recommends that you stap this installation now and
cantact the hardware vendar for software that has
passed Windows Logo testing.

or destal

The software you are instaling for this hardware: o

j ATS1 USE ta Serisl Corverer
-

Continue Argway | [ STOP Instalation |

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



Board Connection

m Click <Finish> to complete the installation.

Figure 4-9. Complete USB Installation

Found New Hardware Wizard

Completing the Found New
H Hardware Wizard
The wizard has finished installing the software for.

g AT31 USE ta Serial Converter

Click Finish to close the wizard,

< Bank I Firish I Canre!

IMPORTANT: If the users change the USB port on which they connect the board, they need to repeat
the installation procedures described above.

In the Device Manager window, the board appears in the Ports (COM & LPT) folder, with the virtual
COM port name indicated in parenthesis.

Figure 4-10. Ports (COM & LPT)
ioixi

Fle  Adin View Help
++ BFESFE N =N
W Cisco Srstems VPN Adapter |

B Irke(R) B2577UM Gigab Network Sornection
W9 Irtel(R) CentrinolR) Advenced-N 6200 AGN
I SIS BT

[C0M & LPT)

i 4 Processors
fAD

System deviaes
d\-_'l— Urhversal Serial Bus controllers

Generic USE b
Generic USE b
Irked(R2) § Serins 3400 Saries Chipset Famiy LB Enbanced Host Controller - 3834
kel 5 Seriers| 400 Sevies Chiprsst Famiy LISE Enanced Host Controller - 3830
UISB Compersie Device

LISE oot Hb
LISE oot Hb =

IMPORTANT: The users just need to select \USBserial\COMxx when SAM-BA shows the Choose
Connection message box, because SAM-BA has converted this virtual COM port name to usb\ARMx.

Case 3: | have installed SAM-BA 2.10 before, and the USB port is recognized as an AT91 USB To
Serial Converter.

To uninstall a previously installed driver on a USB port, the users have to open the Windows Device
Manager tool (the following steps are introduced based on Windows XP. However, they are very similar
for the other versions of OS):

m Connect the board to the computer via a USB port and power it up.

m Select Control panel -> System -> 'Hardware' pane -> Device Manager, and expand the Ports
(COM&LPT) folder.

m Right-click on the AT91 USB To Serial Converter (COMxx) entry.

ATMEL

SAM-BA User Guide I ) 4-5
6421B-ATARM—xx-xxx-11




Board Connection

4-6

m Select <uninstall> and confirm (the entry then disappears from the list).

Figure 4-11. Uninstall USB to Serial Converter Driver

Fio Aion View Help
>+ BEFSPE N =RA

% G [EEE 1394 Dus ot controlers
5 b
") Mice and other pointing devices

W 1304 Mot Adapter 23
9 Ciroo Systems VPN Adapher
B Inted(R) S25TTLM Gigabi Netweork Connection
B Inted(R) Contrina(ft) Advanced-N £200 &GN
L B i B CET i
¥ Ports (COMBLPT)
751 UE to Seeial Corv
5 ECP Prites Puet (LPT1)
 EFRRRD (coms)
& BFBRAMRO (come)
Pro =3

m Power the board off.

To install the USB CDC Serial driver:

m Power the board on.

m The system finds a new hardware and asks the users to search a new driver for it.

m Choose to install from a list or specific location (Advanced), and then click <Next> button.

Figure 4-12. Install USB Automatically

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

=

This wizard helps you install software for:

USB Device

"\'_) If your hardware came with an installation CD
g2 or Hoppy disk. insert it now.

‘What do pou want the wizard to do?

0 Install the software automatically [Recommended)
& Ingtall from a list or specific location [dvanced]

Click Mext to continue:

< Baclk I Mext » I

Cancel

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



Board Connection

m Select <Don't search....>, and then click <Next> button.

Figure 4-13. USB Installation without Search

Please choose your search and installation options.

" Search for the best diiver in these locations:

Use the check boxes below to limit or expand the default search, which includes local
paths and remowable media. The best driver found will be installed.

[T Search removable medis (foppy, CO-ROK...]

[V [riclude this loeation in the search:
IC:\F‘rogram Files"\ATMEL CorparationtSak-BA w211 j Browse:

& Dot search. | will choose the driver to install

Chaose this option ta select the device driver from a list. Windows does nat guarantee that
the driver you choose will be the best match for your hardware.

< Back, I Hext » I Cancel

m Select the Model AT91 USB to Serial Converter in the list and click <Next>.

Figure 4-14. Select ATMEL USB to Serial Converter

Select the device driver pou want to install for this hardware.

“5  Select the manufacturer and model of your hardware device and then click Mest, If you
have a disk that containg the driver you want ta install, click Hawe Disk.

¥ Show compatible hardware

Mode!

AT41 LISB to Seri er
atmE124.5ys ATMEL AT 31 xussx Test Board

& This driver is not digitally signed! Hawe Disk. |

Tell me why driver signing is important

« Back I Mext » I Cancel I

m Click <Continue> to install.

Figure 4-15. USB Installing

Fleasn wast while the wza installs the soltware

- ATHI USE ko Serial Corrvrater

!E The softwarn o e nusaling fof this hsdvane: 4
ATH LISE o Senal Cornmser

wih Windows P (T v vy s Lot i wogataed |

S oy e
Seepis e sme S e e
rocommaends that you stop this installation now and

contact the hardwaie vandor for software that has
paried Window: Logo testing.

SAM-BA User Guide I ) 4-7
6421B-ATARM—xx-xxx-11




Board Connection

4-8

m Click <Finish> to complete the installation.

Figure 4-16. Complete USB Installation

Found New Hardware Wizard

Ny Completing the Found New
Hardware Wizard
The wizard has finished installing the software far:

(3 ATS1 USE to Serial Converter

Click Fivigh to close the: wizard

< Baclk I Finish I Canoel

Case 4: | have already uninstalled the previous driver, but it is still recognized as the previous driver.
Try the following steps to remove the inf completely and reinstall it.

1. Use the Windows Explorer Search option and perform a search operation for AT91 USB to Serial
Converter string in all the files located in the c:\windows\inf directory.

The users may notice that they can’t find this folder, because it's a hidden folder. To view hidden folders,
in menu bar select Tools -> Folder Options -> ‘view’ tab, and select show hidden files and folders.

2. Go back to the above folder and it should now be viewable. Within this folder users will find INF and
PNF files, the device drivers that are being loaded when Windows starts, depending on when they
installed the previous driver (atm6124.sys for example).

3. The users can search and delete this corresponding INF and PNF files associated with the previous
(or wrong) drivers installed.

4. The result will point to a file named oemxxx.inf, where xxx is a number which may differ from one
computer to another.

This file should have a header similar to the below:

; WPUSBSERI AL. | NF (for W ndows 2000)

; Copyright (c) 2000, WondeProud? Technol ogy Inc.

5. On the faulty computer's USB connector, plug the USB cable with the board powered on.
6. Delete the oemxxx.inf file previously found.

7. Open Device manager in Control Panel -> System -> ‘Hardware’ pane.

8. Expand the Ports (COM & LPT) folder and right-click on the AT91 USB to Serial Converter
(COMxx) entry.

9. Select Update Driver..., choose Browse my computer for driver software and install the new INF
file atm6124_cdc.inf manually.

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



Board Connection

4.2 JLINK/SAM_ICE Connection

When using JTAG communication through SAM-ICE or J-Link, the target may be in an undefined state.
In this case, it is up to the user to configure the target (PLL, etc.), if necessary.

sam-ba.dll uses JLinkARM dIl. The user can compile a project in any directory, since
INSTALL_DIRECTORY\drv path has been added to the PATH (user environment variable). If not,
JLinkARM.dlIl has to be set in the directory where user’s application is, so that sam-ba.dll can find it.

4.21 J-LINK Speed
There are basically three types of speed settings:

m Default JTAG speed setting
m Fixed JTAG speed
m Adaptive clocking

These are detailed in Section 5.2.1.

4.2.2 Updating J-Link/SAM-ICE Software

In order to function correctly, compatibility between J-Link/SAM-ICE firmware, USB drivers and
JLinkARM DLL is necessary. Thus it is recommended to update J-Link/SAM-ICE software.

The J-Link/SAM-ICE software update, contained in a zip file, is available in Downloads -> J-Link ARM,
in the website of www.segger.com. To proceed with update, carry out the following steps:

m Download the Jlink_ARM zip file.

m Unzip this zip file.

m Run the .exe file contained in it.

m Check the update in Doc\ReleaseNotes.

m Run the new J-Link.exe to update the JLink/SAM-ICE firmware.

m Check if the PC driver is up to date with the delivery driver in USBDriver folder contained in the .exe.

m Copy the JLinkARM.dIl DLL to INSTALL_DIRECTORY\drv\ folder. The software update is completed.

4.2.3 JTAG Communication Link

When opening a JTAG communication link through a SAM-ICE or a J-Link by using the following
function:
AT91Boot _Qpen(‘’\jlink\ARMD' ', &h handl e);

The steps below are performed:

m Open JLinkARM.dII and its associated library functions.

m Set JTAG speed to 5 KHz in order to connect to the target even if it is running at 32 KHz.
m Stop the target.

m Set a hardware breakpoint at address 0.

m Disable DCache and ICache and set Vector relocation off (for SAM9).

m The monitor sends a PROCRST and PERRST command in the Reset Controller in order to reset
processor and peripherals.

m Wait for the target to reach the breakpoint.
m Switch main clock (SAM7/SAM9).

ATMEL

SAM-BA User Guide I ) 4-9
6421B-ATARM—xx-xxx-11




Board Connectio

n

Switch slow clock.

m Detect external clock (exclude SAM7L).

m Set MAIN Oscillator bypass.

m Read the PMC Main Clock Frequency Register and wait until MAINRDY.
— If timeout, main oscillator on XIN, enable the Main Oscillator;
— Else, external clock on XIN, keep bypass.

m Switch on main clock.

m Wait until the master clock is established.

m Disable the watchdog.

m For SAM7/SAMS, the JTAG speed is set to 3 MHz as it is the lowest allowed crystal frequency. For

SAM9, the JTAG clock is in adaptive mode.
Notes:
1. For further information about DCC, visit www.arm.com.

2. For further information about SAM-BA Boot commands, see the Boot Program section of the product
datasheet.

3. It is recommended to configure the PLL when returning from AT91Boot_Open function in order to
speed up monitor execution.

4.3 COM Port Connection

When using the USB link or the DBGU serial link, SAM-BA Boot must be running onto the target. Com-
munication is performed through the DBGU serial port initialized to 115200 Baud, 8, n, 1. The Send and
Receive File commands use the Xmodem protocol to communicate. Any terminal performing this proto-
col can be used to send the application file to the target. The size of the binary file to send depends on
the SRAM size embedded in the product. In all cases, the size of the binary file must be lower than the
SRAM size because the Xmodem protocol requires some SRAM memory to work. SAM-BA is possible
to access com ports above 9.

4.4 Connect & Disconnect

4-10

To disconnect the target device, select Link/Disconnect in the menu.
To reconnect it, select Link/Connect in the menu.

Figure 4-17. Connect & Disconnect

; SAM-BA 2.11 - at91samTs256-ek

| File Script File Lirk Help

atI1zam 7256 Mem REEE =
Canneck

StartAddress:lDﬂ sh | Dizplay format——
Size in bytefs] - [0x100 ' ascii O Sbi

000200000 OxEADQOOOL3 OxEALAFFFFFE |

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



ATMEL

Y

Section 5
Running SAM-BA

5.1 Execute SAM-BA

Before launching SAM-BA, connect the target board via JTAG, serial cable or USB cable to the
computer. SAM-BA can operate in a graphical mode or it can be launched in command line mode with a
TCL script in parameter. Both modes can be combined to easily obtain a powerful loading solution on
AT91SAM devices customized for the current project.

Click on the SAM-BA icon to start graphical mode, or work with command line, type in a shell:

> [Install Directory]/SAM BA exe [Conmuni cation Interface] [Board]

[Script_File]
[Script_File Args]
where:

m [Communication Interface]: \USBseria\COMxx or (\usb\ARMO)for USB, \jlink\ARMO for JTAG,
COMXx for RS232 (x is the COM port number)

m [Board]: Name of the board accessible through the SAM-BA connection window (see Figure 3-1)

m [Script_File] (Optional): Path to the TCL Script File to execute

m [Script_File Args] (Optional): TCL Script File Arguments

For example:

> C:\ SAM BA. exe \usb\ ARMD AT91SAMBG25- EK nyConmand. t cl

Note: If the users enter bad arguments in the command line or if there are communication problems,
SAM-BA is not able to start.

5.2 Select Connection

As SAM-BA uses scan function in sam-ba.dll to determine all devices connected to the PC, it is recom-
mended to connect the target to the PC before launching SAM-BA.

When SAM-BA starts, a pop-up window (see Figure 5-1) appears, which allows users to choose the con-
nection and board.

Figure 5-1.  Connection Window

JRI=E]

Select the connection : | \USEBsenal\COM3 hd
Select your board : | at97 zam9g15-ak |
JLink speed : | default I

[ Customize lowlevel

Caonhect | Exit |

A

SAM-BA User Guide 5-1
6421B-ATARM—xx-xxx-11




Running SAM-BA
Select connection in Select the connection list.

Figure 5-2.  Select a Connection

l5ix]
Select the connection : I\USB zenial\COME -
Select your board ; MEEIEEEESRTGE)

. [Mlink\ARMO
JLink speed : o4

ugtamize [owlewve

Connect | Exit |

5.2.1 Optional J-LINK Speed Selection When Connecting with J-LINK

There are basically three types of speed settings.

5.2.1.1 Default JTAG Speed Setting
For SAM7/SAMS, the target is clocked at a fixed clock speed of SMHz.

For SAMO, it is possible to select the adaptive clocking function to synchronize the clock to the processor
clock outside the core.

5.2.1.2 Fixed JTAG Speed
Fixed speed can be 100 KHz, 500 KHz, 1 MHz, 2 MHz, 3 MHz, 4 MHz, 4.8 MHz.

Note: SAM9263 only supports adaptive clock mode.

5.2.1.3 Adaptive Clocking

If the target provides the RTCK signal, select the adaptive clocking function to synchronize the clock to
the processor clock outside the core. This ensures there are no synchronization problems over the JTAG

interface.

Figure 5-3.  Select J-LINK Speed

=
Select the connection : | link\WaRMO

Select pour board : | at91 zam3263-k
JLink zpeed ; | 4tdHz

[~ Customize lowlevel [default
adaptive
Coninect | sO0KHz
1hiHz
2hHz
AdHz
I —
ahdHz
ErhdHz
ardHz -

4

b 71l

Note: It's recommended to use default mode.

A_ IIIIEL@ SAM-BA User Guide

5-2
6421B-ATARM—xx-xxx-11




5.3

5.4

5.4.1

SAM-BA User Guide

Running SAM-BA

Select Target Board

Select target board in Select your board list.

Figure 5-4.  Select Target Board

Ik

Select the connection : | MJSEB zenal\COMS
Select pour board ;| at91 zam32E63-ak

|l

JLirnk speed ; |at91 2amnc236-gk
at91sam7uch12-ek
at91zam3260-ek,
at91sam3261 ek,

atdl s )
atd1zam3g

I:Dnnectl

at91zamIgl Hek J
atd1zamIg20-ek
atd1zam3g25-ek
at912am3g35-ek bl

Note: If users want to change boards, SAM-BA must be restarted.

Customize Low level Initialization

The on-chip SAM-BA Boot program performs device initialization. It configures slow clock, main clock to
be able to boot from external non-volatile memories (NVM), and finally, if no valid program is found in
NVM, it executes a monitor called SAM-BA Monitor. The first applet (lowlevelinit.bin) is loaded after user
presses Connect button. For optimization purpose, the first applet should perform a complete configura-
tion to speed up the master clock.

By default, this applet initializes main oscillator to a fundamental crystal, and fasten master clock by con-
figuring PLL clock.

The main oscillator can be an external crystal or external clock on XIN. For the details of the typical crys-
tal, please refer to the electrical characteristics of the main oscillator in the DC Characteristics section of

the product datasheet.

User Interface of Low Level Initialization SAM-BA

To customize the external crystal different from that on EK board or the external clock on XIN, select the
Customize Lowlevel option.

Figure 5-5. Lowlevel Init Interface

il
Select on board cystal: IEDDDDDEI -

Bypazz mode

[ Bupass Main Oscillator

‘Extemal Clock inHz) [0

Select the con |

Set Cancel

Select yoL
JLink speed: |aut0 |

v Customize lowlewvel

I:Dnnectl ﬂl

6421B-ATARM—xx-xxx-11



Running SAM-BA

Select external crystal in crystal list, click <Set> button to finish configuration.

Figure 5-6.  Select on Board Crystal

[
Select on board crpstal: | 18432000 -
14745600 -

B s 6000000 S

™ Bygi7734470

; il ]
External Clock. [in H et o
sternal Clack. [in Hz) S O000000

24000000
==t bepooooo I
55224000

32000000 =
33000000 7

Or, check Bypass Main Oscillator, and enter user external clock on XIN. Click <Set> button to finish
configuration.

Figure 5-7.  Select Bypass Mode

[
Select on board crpstal; |3DDDDDD hd

Bypazz mode

¥ Eypass Main Oscillator
Enternal Clock [in Hz] |1 8432000

Set | Cahicel |

Note: If the users connect with USB, the modification of crystal or bypass mode may not always be
allowed for USB PLL configuration. Please check Boot Program section of product datasheet.

For more detailed information about how to customize user main oscillator, please refer to “SAM-BA
Customization” section.

5.5 SAM-BA Task

To avoid having many sam-ba.exe tasks in task manager, SAM-BA verifies if an existing sam-ba task is
running before launching.

m SAM-BA task management asks to kill an active SAM-BA instance.
— Yes: to kill it
— No: cancel

Figure 5-8.  Task Management Dialog Box

i

Active SAM-BA instance found, sam-ba.exe PID 42848
ez o kill the ingtance.

Yes | Mo |

6421B-ATARM—xx-xxx-11

SAM-BA User Guide




Running SAM-BA

If selecting yes, the following dialog in Figure 5-9 will ask to close the current SAM-BA.

Figure 5-9. Close and Restart SAM-BA

FEr— i

Recommand to reset pour board and connect zam-ba again!
ez to close me.

Tes | Mo |

ATMEL

SAM-BA User Guide I ) 5-5
6421B-ATARM—xx-xxx-11




Running SAM-BA

ATMEL

5-6 I ) SAM-BA User Guide
6421B-ATARM—xx-xxx-11




ATMEL

Y

Section 6
SAM-BA GUI

When SAM-BA is launched, after selection of the board and the communication link, the main window
appears (see Figure 6-1). It contains three different areas (from top to bottom):

m Memory Display area
m Memory Download area
m TCL Shell area

The Memory Display area and the Memory Download area are used to simplify the memory access.

6.1 SAM-BA Main Window

Figure 6-1. SAM-BA Main Window

e 5AM u:'.n .uh.-—..q,ls-i =lof =
4 |
o 2 =
Adbees:[00  GoeForRecswe Fle):[B1000 by} Cotmpans st fls with oy
Sergls
[E st Senallachs [P0 C5:0] = Extcudn
el
\gniOARMO Bosd MHQMH]I!M_.I

The TCL shell area is a standard TCL shell. Everything typed in the shell is interpreted by a TCL inter-

preter. This area gives access to TCL commands. Type “puts Welcome” and the result is “Welcome”.

Type “expr 3 + 7” and the result is “10”.
6.2 Memory Display Area

In this area users can display a part of the microcontroller memory content. Three different display for-

mats can be used: 32-bit word, 16-bit half-word or 8-bit byte, with a maximum display of 1024-byte long

memory area. Values can also be edited by double-clicking on them (see Section 6.2.2).

Note: Only valid memory areas or system/user peripheral areas are displayed. An error message is writ-

ten in the TCL Shell area if a forbidden address is supplied or if a memory overrun occurs.
SAM-BA User Guide 6-1

6421B-ATARM—xx-xxx-11



SAM-BA GUI

Figure 6-2. Memory Display Area

— atd1zamdgl s Memary Displa

Start Adehess :[0:300000 Refesh | [ Display fomnat Applet traces on DEGL
Sie inbytefs):[0A00 © asci O Bhit O 16bit & 3260 [ =] boply

0x00300000 OxEAQO0D0Z0  OxFFFFFFFF  0x00000000  Ox0S000000 j

0x00300010 Ox00000000 0x00000000 Ox00000001 Ox000000z0
0Ox00300020 Ox00000000 Ox00000000 Ox00000000 Ox00000000
0x00300030 Ox00000000  OxO00000000  Ox00000000  Ox00000000
0x00300040 Ox00000000 0x00000000 Ox00000000 Ox00000000

NxNNINANSN_ NxNOONNNNN. NxNA0NANNa. AxAN0NAnonNa. AxAnnnnnnn _l;l
»

6.2.1 Read Memory Content
m Enter the address of the area users want to read in the Starting Address field.
m Enter the size of the area to display.

m Choose display format: 32-bit word, 16-bit half-word or 8-bit byte. This automatically refreshes the
memory contents.

m Press the Refresh button.

6.2.2 Edit Memory Content

Some memories and/or embedded peripherals can be edited.

Figure 6-3. Edit Memory Content

e

Addresz ;. Ox0030001
Value : |EIHEE|

] I Cancel I

Double-click on the value users want to update in an editable pop-up window.

Note: Only some memories can be updated this way, e.g., static RAM or SDRAM (if previously initial-
ized). If the users try to write the other memory types, nothing happens.

Press OK to update the value in the Memory display area. The corresponding TCL command is dis-
played in the TCL Shell area.

Note: Only the lowest bits of the value are taken into account if the format of the value entered is higher
than the display format.

6.3 Memory Download Area

The Memory download area provides a simple way to upload and download data. For each memory,
files can be sent and received and the target’s memory content can be compared with a file on the com-
puter. This area also gives access to some specific scripts for the different embedded memories (SRAM,
SDRAM, DDRAM, Flash, DataFlash, NandFlash...).

ATMEL

6-2 I ) SAM-BA User Guide

6421B-ATARM—xx-xxx-11




SAM-BA GUI

Figure 6-4. Memory Download Area

DDRAM | DalaFlash AT4SDB/DCE | EEPROM AT24 | NandFlash | SDRAM | SRAM  SeriaFlash AT25/AT2E

Download / Upload Fil
Send File Mame : | = Send File

Receive File Name : | = Receive File

Address : |0x0 Size [Far Receive File] : | 01000 buyte(s) Campare zent file with memory
Sciipl
’]Enable Seralflash [SPI0 C50) j Execute ‘

6.3.1 Upload a File
First, select the memory by clicking on its corresponding tab.

Enter the file name location in the Send File name field or open the file browser by clicking on the Open
Folder button and select it. If users enter a wrong file name, an error message will be displayed in the
TCL Shell.

Enter the destination address in the selected memory where the file should be written. If users enter a
forbidden address, or if their file overruns the memory size, an error message will be displayed in the
TCL Shell.

Note: A forbidden address corresponds to an address outside the selected memory range address.
Send the file using the Send File button. Make sure that the memory is correctly initialized before send-
ing any data.

6.3.2 Download a File
First, select the memory by clicking on its corresponding tab.

Enter the file name location in the Receive File name field or open the file browser by clicking on the
Open Folder button and select it. If the users enter a wrong file name, an error message is displayed in
the TCL Shell.

Enter the address of the first data to read in the Address field.
Enter the data size to read in the Size field.

If the users enter a forbidden address, or if their file size overruns the memory size, an error message
will be displayed in the TCL Shell.

Note: A forbidden address corresponds to an address outside the selected memory range address. Get
data using Receive File button. Make sure the your memory is correctly initialized before getting any
data.

6.3.3 Compare Memory with a File

Usually, this feature allows to check if a sent file was correctly written into the memory, but users can
compare any files with the memory content. The comparison is made on the size of the selected file.

First, select the concerned memory by clicking on its corresponding tab.

Enter the file name location in the Send File name field or open the file browser by clicking on the Open
Folder button and select it. If the users enter a wrong file name, an error message will be displayed in
the TCL Shell.

Enter the address of the first data to compare with the selected file in the Address field. If the users
enter a forbidden address, or if the file size overruns the memory size, an error message will be dis-

played in the TCL Shell.
ATMEL

SAM-BA User Guide I ) 6-3
6421B-ATARM—xx-xxx-11




SAM-BA GUI

Note: A forbidden address corresponds to an address outside the selected memory range address.
Compare the selected file with the memory content using the Compare sent file with memory button. A
message box will be displayed if the file matches or not with the memory content of the file size. Make
sure that the memory is correctly initialized before comparing any data.

6.4 Script

File Functionality

SAM-BA allows users to create, edit and execute script files. A script file configures the device easily or
automatically runs significant scripts. The Script File menu supplies commands to start and stop record-
ing, to execute, reset, edit and save the recording file. The name of the generate file is
historyCommand.tcl.

Figure 6-5.  Script File Menu

i SAM-BA Z2.11 - at9lsam7s256-ek

‘ File Script File Link. Help

atdls Start Recording
v Skop Recording
Reset Recording

Refresh | Display format——
gzl 0 Shit

Stark ¢

Size ir

Execute Script File
Edit Seript: File aoo1s O0xEAFFFFFE

o

0x00200010 OxELFFFFFE OxELFFFFFE

6.4.1 Start / Stop / Reset Recording

6.4.2 Editing

In the Script File menu, select Start Recording to begin the record. Now, all the commands that are to
be executed in different blocks of the software are recorded in a specific file called historyCommand.tcl.
This file is located in the usr directory.

Note: This file can only be written through the Start / Stop / Reset Recording commands. If the recording
file is not reset, the new recorded commands will be added at the end of the historyCommand.tcl file.
When users want to stop recording, select Stop Recording in the menu. If they want to erase the histo-
ryCommand.tcl content, select Reset Recording.

the Script File

The users have the possibility to edit the historyCommand.tcl recording file. Use the Edit Script File
command in the Script File menu. A new window appears in which users can edit and save the content.
The users can save their modified script in another file through the Save file button. Thus several config-
uration scripts for specific use are available.

6.4.3 Execute the Script File

6-4

As it is now possible for SAM-BA to execute TCL script files directly from a shell without using the GUI.
There are two possibilities to execute a script file.

“Running SAM-BA” for more information on how to execute TCL script files from a shell.

Use the Execute Script File command in the GUI Script File menu and enter the TCL file to execute.
Messages that inform of the correct execution of the script are displayed in the TCL Shell and/or through
message boxes.

Note: All TCL commands can be executed through script files.

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



ATMEL

Y

Section 7
SAM-BA TCL Commands

TCL is a commonly used scripting language for automation. This interpreted language offers a standard
set of commands which can be extended with application specific commands written in C or other lan-
guages. Tutorials and manuals can be downloaded at: http://www.tcl.tk/doc/.

Specific commands have been added to the SAM-BA TCL interpreter to interface with AT91SAM
devices. These basic commands can be used to easily build more complex routines. In order to commu-
nicate with the board, API functions are available to deal with AT91Boot_DLL.dll library.

7.1 SAM-BA Scripting Environment

When SAM-BA starts, a structure containing board and connection information is set. This global vari-
able is target, and the global target statement must be declared in any procedure using an API function.
Target structure contents:

m Handle: identifier of the link used to communicate with the target

m Board: a string containing the board name (i.e., AT91SAM7SE512-EK)

m Connection: connection type. It can be : USBseriaNCOMxx or \usb\ARMx (compatible with SAM-
BA® version earlier than 2.11) for a USB link, COMxx for a serial link (xx indicates the COM port
used), or \jlink\ARMx

m ComType: Communication link identification
- 0: USB
- 1:COM
— 2:JLINK

Note: These variables are declared as global variables. Within functions, symbols must be declared as
global to refer to the global variables:

TCL example code:

proc foo {
gl obal target
puts “ $target(board) is connected with $target(connection)”

SAM-BA User Guide 7-1
6421B-ATARM—xx-xxx-11




SAM-BA TCL Commands

7.2 SAM-BA Built-in Commands

Table 7-1. Built-In Command List

Commands Argument(s)
TCL_Write_Byte Handle Value Address err_code

Example: TCL_Write_Byte $target(handle) 0xCA 0x200000 err_code
TCL_Write_Short Handle Value Address err_code

Example: TCL_Write_Short $target(handle) 0OXCAFE 0x200002 err_code
TCL_Write_Int Handle Value Address err_code

Example: TCL_Write_Int $target(handle) 0OxCAFAEACD 0x200000 err_code
TCL_Write_Data Handle Address BufferAddress Size err_code

Example: TCL_Write_Data $target(handle) 0x200000 $buf $size err_code
TCL_Read_Byte Handle Address err_code

Example: TCL_Read_Byte $target(handle) 0x200000 err_code
TCL_Read_Short Handle Address err_code

Example: TCL_Read_Short $target(handle) 0x20002 err_code
TCL_Read_lInt Handle Address err_code

Example: TCL_Read _Int $target(handle) 0x200000 err_code
TCL_Read_Data Handle Address BufferAddress Size err_code

Example: TCL_Read_Data $target(handle) 0x200000 $buf $size err_code
TCL_Compare “fileName1” “fileName2”

Example: TCL_Compare “C:/temp/file1.bin“ “C:/temp/file2.bin“
TCL_Go Handle Address err_code

Example: TCL_Go $target(handle) 0x20008000 err_code
TCL_JlinkSetSpeed speed

Example: TCL_JlinkSetSpeed 2
send_file Memory Name Address

Example: send_file {SDRAM} “C:/temp/file1.bin“ 0x20000000
receive_file Memory Name Address Size

Example: receive_file {SDRAM} “C:/temp/file1.bin“ 0x20000000 0x10000
compare_file Memory Name Address

Example: compare_file {SDRAM} “C:/temp/file1.bin“ 0x20000000

7.21 Command Description

7.2.1.1  Write Commands

Write a byte (TCL_Write_Byte), a halfword (TCL_Write_Short) or a word (TCL_Write_Int) to the target or
size of data buffer (TCL_Write_Data) to the target.

m Handle: handler number of the communication link established with the board

Value: byte, halfword or word to write in decimal or hexadecimal (for TCL_Write_Byte,

TCL_Write_Short and TCL_Write_Int)

7-2

Address: address in decimal or hexadecimal
BufferAddress: data address in decimal or hexadecimal (only for TCL_Write_Data)
Size: size of data to be written (only for TCL_Write_Data)

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



SAM-BA TCL Commands

m QOutput: nothing

7.2.1.2 Read Commands

Read a byte (TCL_Read_Byte), a halfword (TCL_Read_Short) or a word (TCL_Read_Int) or size of data
(TCL_Read_Data) from the target.

m Handle: handler number of the communication link established with the board

m Address: address in decimal or hexadecimal

BufferAddress: data address in decimal or hexadecimal (only for TCL_Read_Data)

Size: size of data to be read (only for TCL_Read_Data)

Output: the byte, halfword byte, word read in decimal (for TCL_Write_Byte, TCL_Write_Short and
TCL_Write_Int)

Notes:

1. TCL_Read_Int returns a signed integer in decimal. For example, reading with TCL_Read_Int $tar-
get(handle) OxFFFFFFFF command returns ‘-1’, whereas reading OxFF with TCL_Read_Byte command
returns 255’.

2. To obtain the result in hexadecimal format, use the TCL format command:

puts [format “%x“ [TCL_Read_lInt $target(handle) 0x300000 err_code]]

7.21.3 send_file
Send a file in a specified memory.

= Memory: memory tag.

m Name: absolute path file name (in quotes) or relative path from the current directory (in quotes).
m Address: address in decimal or hexadecimal (in quotes).

m QOutput: information about the corresponding command on the TCL Shell.

7.2.1.4 receive_file
Receive data into a file from a specified memory.

m Memory: memory tag.

m Name: absolute path file name in quotes or relative path (from the current directory) file name in
quotes.

m Address: address in decimal or hexadecimal (in quotes).
m Size: size in decimal or hexadecimal (in quotes).
m Qutput: information about the corresponding command on the TCL Shell.

7.21.5 compare_file
Compare a file with memory data.

m Memory: memory tag.

Name: absolute path file name (in quotes) or relative path from the current directory (in quotes).

Address: address of the first data to compare with the file in decimal or hexadecimal (in quotes).

Output: information about the command progress on the TCL Shell.

ATMEL

SAM-BA User Guide I ) 7-3
6421B-ATARM—xx-xxx-11




SAM-BA TCL Commands

7.21.6 TCL_Compare

Binary comparison of two files.

m FileName1: absolute path file name (in quotes) or relative path from the current directory (in quotes) of
the first file to compare.

m FileName2: absolute path file name (in quotes) or relative path from the current directory (in quotes) of
the second file to compare with the first.

m Output: return ‘1’ in the case of error, and ‘0’ if files are identical.

7.21.7 TCL_Go

Jump to a specified address and execute the code.

m Handle: handler number of the communication link established with the board.

m Address: address to jump to in decimal or hexadecimal.

Note: If the users do not want to exit SAM-BA, the code must include lines that enable a return to the
SAM-BA application. Otherwise, SAM-BA does not recover correctly. The memory tag (in braces) is the
name of the memory module defined in the memoryAlgo array in the board description file. For example,
{DataFlash AT45DB/DCB} Warning: If you leave SAM-BA, be sure to reboot the board before launching

it next time.

7.2.1.8 TCL_JlinkSetSpeed

Set speed for JLINK connection.

Speed: speed to be configured.

m 0: default

m 1: adaptive mode
: T00KHz

: 500KHz

: 1MHz

: 2MHz

: 3MHz

: 4MHz

: 4.8MHz

|
N o ol WD

7.2.2 Additional Command

Moreover, a set of older commands (for SAM-BA v1.x script compatibility) is always available:

Table 7-2. Additional Command List

Commands Argument(s) Example

write_byte Address Value write_byte 0x200002 OxEF
write_short Address Value write_short 0x200004 0x1256
write_int Address Value write_int 0x300400 OXEFDF45F9
read_byte Address read_byte 0x200010

7-4

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



SAM-BA TCL Commands

Table 7-2. Additional Command List

Commands Argument(s) Example

read_short Address read_short 0x200020
read_int Address read_int 0x200060
go Address go 0x20000000

Write commands: Write a byte (write_byte), a halfword (write_short) or a word (write_int) to the target.

m Address: address in decimal or hexadecimal
m Value: byte, halfword or word to write in decimal or hexadecimal
m Output: nothing

Read commands: Read a byte (read_byte), a halfword (read_short) or a word (read_int) from the target.

m Address: address in decimal or hexadecimal
m Output: the byte, halfword or word read in decimal

Note: read_int returns a signed integer in decimal. For example, reading with read_int OxFFFFFFFF
command returns ‘-1’, whereas reading OxFF with read_byte command returns ‘255’.

go: Jump to a specified address and execute the code.
m Address: address to jump to in decimal or hexadecimal

If users leave SAM-BA, be sure to reboot the board before launching it next time.

7.3 Example Scripts

An example script is located in examples\ samba_tcl_script, which loads an example file in NAND Flash
by scripts.

ATMEL

SAM-BA User Guide I ) 7-5
6421B-ATARM—xx-xxx-11




SAM-BA TCL Commands

ATMEL

7-6 I O SAM-BA User Guide
6421B-ATARM—xx-xxx-11




ATMEL

Y

Section 8

Sam-ba.dll

The SAM-BA connects a PC with an ARM target device. The API functions of the sam-ba DLL allow
scanning, opening a connection and accessing registers as well as starting code execution at specified

addresses.

API Function

Table 8-1 lists the available routines of the general API. Detailed descriptions of the routines can be
found in the sections that follow.

Table 8-1. API Function List

Commands

Argument(s)

AT91Boot_Scan

Scans connected devices and returns a list of connected devices

AT91Boot_Open

Opens the communication link on an AT91SAM device

AT91Boot_Close

Closes the communication link previously opened on an AT91SAM device

AT91Boot_Write_Int

Writes a 32-bit word into the volatile memory of the connected target

AT91Boot_Write_Short

Writes a 16-bit word into the volatile memory of the connected target

AT91Boot_Write_Byte

Writes a 8-bit word into the volatile memory of the connected target

AT91Boot_Write_Data

Writes X bytes into the volatile memory of the connected target

AT91Boot_Read_Int

Reads a 32-bit word from the connected target

AT91Boot_Read_Short

Reads a 16-bit word from the connected target

AT91Boot_Read_Byte

Reads a 8-bit word from the connected target

AT91Boot_Read_Data

Reads X bytes from the connected target

AT91Boot_Go

Start code execution at specified address

AT91Boot_JlinkSetSpeed

speed

AT91Boot_Scan

This function scans connected devices and returns a list of connected devices. Detection is performed in

the following order:

m AT91 USB CDC connected devices using usbser.sys driver
m Connected SAM-ICE or JLink devices
m All available serial COM ports

Note: The AT91Boot_Scan function only checks USB CDC with ATMEL VID&PID
(USB\VID_03EB&PID_6124) and symbol should be AT91 USB to Serial Converter.

SAM-BA User Guide

8-1

6421B-ATARM—xx-xxx-11




Sam-ba.dll

Description

voi d AT91Boot Scan(char *pDevli st);

m pDevlList: Pointer to a char* table
— \USBseria\COMxx for USB connected devices
— \jlink\ARMx for SAM-ICE/JLink connected devices
— COMxx for available COM ports

Note: All table entries must have been allocated prior to using the AT91Boot_Scan function. Each string
must be allocated from the application and must have a size superior to 80 bytes. That string is used to
recover, USB or JTAG box device name which is then replaced by a reduced symbolic name.

Code Example

CHAR *st r Connect edDevi ces[ 5] ;

for (UNT i=0; i<5; i++)

st r Connect edDevi ces[i] = (CHAR *)nal | oc(100);
AT91Boot _Scan((char *)strConnect edDevi ces);

/* AT91Boot _Scan may return code sinilar to that bel ow
st rConnect edDevi ces[ 0] : \usb\ ARMD
strConnect edDevi ces[ 1] : \jlink\ ARM
strConnect edDevi ces[ 2] : COML1

*/

8.1.2 AT91Boot_Open

This function opens the communication link on an AT91SAM device depending on the string given in the
argument.

voi d AT91Boot Open(char *nane, int *h_handl e);
m name: Pointer to a string returned by AT91Boot_Scan function
m h_handle: Communication handle

— NULL if opening connection is failed

— Non NULL if opening connection is successful

Code Example
AT91Boot Open(strConnect edDevi ces[ 0], &h_handl e);

8.1.3 AT91Boot_Close

8-2

This function closes the communication link previously opened on an AT91SAM device.

Description

voi d AT91Boot Cl ose(int h_handl e);
m h_handle: Communication handle returned by AT91Boot_Open function

Code Example
AT91Boot _Cl ose(h_handl e);

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



Sam-ba.dll

8.1.4 AT91Boot_Write_Int
This function writes a 32-bit word into the volatile memory of the connected target.

Description

void AT91Boot Wite Int(int h_handle, int uValue, int uAddress, int
*err_code);

m h_handle: Communication handle returned by AT91Boot_Open function
m uValue:  32-bit value to write

m uAddress: Address to write 32-bit value

m err_code: Error code

(int)(0x0000): AT91C_BOOT_DLL_OK

(int)(0xFOO01): Bad h_handle parameter

(int)(0xFO002): Address is not correctly aligned.

(int)(0xFO05): Communication link is broken.

Code Example

AT91Boot _Wite_ I nt(h_handl e, OxCAFECAFE, 0x200000, &err_code);

8.1.5 AT91Boot_Write_Short
This function writes a 16-bit word into the volatile memory of the connected target.

Description

voi d AT91Boot _Wite_Short(int h_handl e, short wwval ue, int uAddress, int

*err_code);
m h_handle: Communication handle returned by AT91Boot_Open function
m wValue:  16-bit value to write

m uAddress: Address to write 16-bit value
m err_code: Error code
— (int)(0x0000): AT91C_BOOT_DLL_OK
— (int)(0xFO001): Bad h_handle parameter
— (int)(OxF002): Address is not correctly aligned.
— (int)(0xF005): Communication link is broken.

Code Example

AT91Boot _Wite_ Short (h_handl e, OxCECA, 0x200000, &err_code);

8.1.6 AT91Boot_Write_Byte
This function writes a 8-bit word into the volatile memory of the connected target.

Description

void AT91Boot Wite Byte(int h_handle, char bValue, int uAddress, int
*err_code);

m h_handle: Communication handle returned by AT91Boot_Open function
m bValue: 8-bit value to write
m uAddress: Address to write 8-bit value

ATMEL

SAM-BA User Guide I ) 8-3

6421B-ATARM—xx-xxx-11

m err_code: Error code




Sam-ba.dll

int)(0x0000): AT91C_BOOT_DLL_OK
int)(OxF001): Bad h_handle parameter
)(
)

(
(int
(int)(0xFO002): Address is not correctly aligned.
(int)(OxF005): Communication link is broken.

Code Example

AT91Boot _Wite Byte(h_handl e, OxCA, 0x200000, &err_code);

8.1.7 AT91Boot_Write_Data
This function writes X bytes into the volatile memory of the connected target.

Description

voi d AT91Boot Wite Data(int h_handle, int uAddress, int *bBuf,int uSize, int
*err_code);

h_handle: Communication handle returned by AT91Boot_Open function

uAddress: Address to write 8-bit value

uBuf : Pointer to 8-bit data buffer to write

uSlze : Buffer size in byte

err_code: Error code
— (int)(0x0000): AT91C_BOOT_DLL_OK
— (int)(OxFO001): Bad h_handle parameter
— (int)(OxF002): Address is not correctly aligned.
— (int)(0xF005): Communication link is broken.

Code Example
char bbData[10] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

0x09};

AT91Boot _Wite_ Data(h_handl e, 0x200000, bData, 10, &err_code);
8.1.8 AT91Boot_Read_Int

This function reads a 32-bit word from the connected target.

Description

voi d AT91Boot _Read_Int(int h_handle, int *uValue, int uAddress, int

*err_code);
m h_handle: Communication handle returned by AT91Boot_Open function
m uValue : Pointer to a 32-bit value

uAddress: Address to read 32-bit value

m err_code: Error code

(int)(0x0000): AT91C_BOOT_DLL_OK

(int)(0xFOO01): Bad h_handle parameter

— (int)(OxF002): Address is not correctly aligned.
(int)(0xFO05): Communication link is broken.

—_— ===

ATMEL

8-4
6421B-ATARM—xx-xxx-11

SAM-BA User Guide




Sam-ba.dll

Code Example

i nt Chipld;

AT91Boot _Read_I nt (h_handl e, &Chi pld, OxFFFFF240, &err_code);
8.1.9 AT91Boot_Read_Short

This function reads a 16-bit word from the connected target.

Description

voi d AT91Boot Read_Short(int h_handle, short *wwval ue, int uAddress, int
*err_code);

h_handle: Communication handle returned by AT91Boot_Open function
wValue : Pointer to a 16-bit value

uAddress: Address to read 16-bit value

err_code:  Error code:
— (int)(0x0000): AT91C_BOOT_DLL_OK
— (int)(0xFO001): Bad h_handle parameter
— (int)(OxF002): Address is not correctly aligned.
— (int)(0xF005): Communication link is broken.

Code Example

short wRead;
AT91Boot _Read_Short (h_handl e, &wRead, 0x200000, &err _code);

8.1.10 AT91Boot_Read_Byte
This function reads a 8-bit word from the connected target.

Description

voi d AT91Boot _Read_Byte(int h_handl e, char *bValue, int uAddress, int

*err_code);
m h_handle: Communication handle returned by AT91Boot_Open function
m bValue : Pointer to a 8-bit value

uAddress: Address to read 16-bit value

err_code: Error code
— (int)(0x0000): AT91C_BOOT_DLL_OK
— (int)(0xFO001): Bad h_handle parameter
— (int)(OxF002): Address is not correctly aligned.
— (int)(0xF005): Communication link is broken.
Code Example

char bRead;
AT91Boot Read Byt e(h_handl e, &bRead, 0x200000, &err_code);

ATMEL

SAM-BA User Guide I ) 8-5

6421B-ATARM—xx-xxx-11




Sam-ba.dll

8.1.11 AT91Boot_Read_Data
This function reads X bytes from the connected target.

Description

voi d AT91Boot Read_Data(int h_handl e, int uAddress, char *bBuf, int uSize,
int *err_code);

m h_handle: Communication handle returned by AT91Boot_Open function

uAddress: Address to write 8-bit value

uBuf : Pointer to an 8-bit data buffer where to store read data
uSlze : Number of bytes to read

err_code:  Error code
— (int)(0x0000): AT91C_BOOT_DLL_OK
— (int)(0OxF001): Bad h_handle parameter
— (int)(OxF002): Address is not correctly aligned.
— (int)(OxF005): Communication link is broken.

Code Example

char bbData[ 10];
AT91Boot _Read_Dat a( h_handl e, 0x200000, bData, 10, &err_code);

8.1.12 AT91Boot_Go

This function allows starting code execution at specified address.

Description

voi d AT91Boot Go(int h_handle, int uAddress, int *err_code);
m h_handle: Communication handle returned by AT91Boot_Open function
m uAddress: Address to start code execution
m err_code: Error code
— (int)(0x0000): AT91C_BOOT_DLL_OK
— (int)(0xFO001): Bad h_handle parameter
— (int)(0OxF005): Communication link is broken.

Code Example

AT91Boot _CGo(h_handl e, 0x200000, &err_code);

8.1.13 AT91Boot_JlinkSetSpeed
This function allows switching Jlink speed.

Description

voi d AT91Boot _Jli nkSet Speed(i nt uSpeed);
m uSpeed: Jlink speed

— 0: default

— 1: adaptive mode

— 2: 100KHz

— 3: 500KHz

— 4:1MHz

6421B-ATARM—xx-xxx-11

SAM-BA User Guide




Sam-ba.dll

— 5:2MHz
— 6: 3MHz
— 7:4MHz
— 8:4.8MHz

Code Example

/* Set Jlink speed to adaptive node */
AT91Boot _JI i nkSet Speed(1);

8.2 API Using Sam-ba.dlII

8.2.1 ole_with_mfc

The project OLE_MFC.dsw is located in examples\samba_dll_usage_VC6\ole_with_mfc folder. It
scans connected devices, opens the first one, and reads DBGU chip ID. If a SAM9261 device is
detected, it programs a small application (BasicMouse) in the DataFlash. To use sam-ba.dll in such a
project, the following steps must be performed:

m Create an AT91Boot_DLL class in the project. To do this, copy both at91boot_dll.cpp and
at91boot_dll.h files into the project directory.

Note: Do not use the ClassWizard/Add Class/From a type library... as there is a bug in Visual C++
6.0. The bug prevents any functions containing a char variable as a parameter from being imported.

m Initialize OLE libraries by calling AfxOlelnit function.

m Create an AT91Boot_DLL driver object to manage AT91Boot_DLL COM object.

m Create an AT91Boot_DLL COM object instance with the AT91Boot_DLL program ID(1)("
SAMBA_DLL.SAMBADLL.1") by using CreateDispatch function.

Notes:

1. Program ID is stored in the base register and is an easier way to retrieve AT91Boot_DLL Class ID
necessary for CreateDispatch function. Once these four steps have been performed, DLL functions
should be available. For their prototypes and for details on how to call these functions, please see
at91boot_dll.h header file.

2. At this step, if AT91Boot_DLL functions are not available, it is because the AT91Boot_DLL.dIl has not
been registered correctly.

Code example:

#i ncl ude "at91boot _dll.h"

| AT91Boot DLL *m pAT91Boot DLL;

AfxQelnit();

m pAT91Boot DLL = new | AT91Boot DLL;

m _pAT91Boot DLL- >Cr eat eDi spat ch(_T(" SAMBA DLL. SAMBADLL. 1"));

ATMEL

SAM-BA User Guide I ) 8-7
6421B-ATARM—xx-xxx-11




Sam-ba.dll

8.2.2 ole_without_mfc

8.2.3 Launch

8-8

This section explains the project OLE_without_MFC.dsw located in examples\samba_dll_usage_VC6\
ole_without_mfc folder.

To use sam-ba.dll in such a project, the following steps must be performed:
m |nitialize COM library by calling Colnitialize(NULL). Use CoUninitialize() to close COM Library at the
end of the project.

m Import sam-ba.dll COM object from AT91Boot_DLL.tlb Type Library file. Eventually rename
namespace if necessary.

m Use namespace to share the same namespace as SAMBA_DLL library.
m Create a pointer to SAMBA_DLL COM obiject.

In stdafx.h header file:

#import "../drv/SAMBA DLL.tIb" renanme_nanespace(" SAMBADLL_Li b")
In OLE_without_MFC.cpp source file:

usi ng nanespace SAMBADLL Li b;

Colnitialize(NULL);

/1 COM bj ect Creation

| AT91Boot DLLPtr pAT91Boot DLL( __uui dof ( SAMBADLL) ) ;

Applets

After importing sam-ba.dll, the example loads an applet first, which contains the programming algorithm
for its dedicated memory.

/1 SAM BA 2.11 appl et constants

#i ncl ude "appl et. h"

#defi ne FLASH APPLET PATH "..\\..\\tcl lib\\at9lsanvs256-ek\\isp-fl ash-
at 91sanvs256. bi n"

Creat eFi | e( FLASH_APPLET_PATH, CGENERI C_READ, FILE_SHARE READ |

FI LE_ SHARE WRI TE, NULL, OPEN _EXI STI NG, FI LE_FLAG SEQUENTI AL_SCAN, NULL);

Then, it communicates with applet using functions embedded in sam-ba.dll such as
AT91Boot_Write_Int, AT91Boot_Read_Int or AT91Boot_Go().

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



ATMEL

Y

Section 9

Applets

In order to be able to program non-volatile memories, SAM-BA uses several small binary files called
applets. For each AT91SAM device, there is one applet dedicated to each external memory device that
the chip can deal with. Each applet contains the programming algorithm for its dedicated memory. Take
a SAM9263 device for example, SAM-BA can program SDRAM, Nandflash, Dataflash, Serialflash, and
Norflash. That is why users will find five binary files in SAM-BA X.Y\tcl_lib\at91sam9263-ek folder.

The applet code consists of:
m A mailbox data structure for commands and data read or written by SAM-BA GUI application
m At least an init part used to initialize PIOs and configure access to the memory

m Some other read, write, erase parts
m A buffer area located after the applet code that contains the data to be written or read by the applet

9.1 Applet Workflow

The target handles the programming algorithm by running applets. The target switches between two
modes: SAM-BA Monitor Mode and Applet Mode. The SAM-BA monitor mode is the command inter-
preter that runs in the ROM memory when users connect the chip with USB or COM port to the
computer. It allows the computer to send or receive data to/from the target. All transfers between host
and device are done when the device is in SAM-BA monitor mode. Under Applet Mode, the device per-
forms programming operations and is not able to communicate with the host.

An applet is a small piece of software running on the target. It is loaded in the device memory while the
device is in SAM-BA monitor mode using TCL_Write command. The device switches from SAM-BA
monitor mode to Applet mode using the TCL_Go command. The device executes the applet code. At the
end of the current operation, the device switches back to SAM-BA monitor mode.

An applet can execute different programming or initialization commands. Before switching to Applet
mode, the host prepares command and arguments data required by the applet in a mailbox mapped in
the device memory. During its execution, the applet decodes the commands and arguments prepared by
the host and execute the corresponding function. The applet returns state, status and result values in the
mailbox area. Usually, applets include INIT, buffer read, buffer write functions. To program large files,
the whole programming operation is split by the host into payloads. Each payload is sent to a device
memory buffer using SAM-BA monitor command TCL_Write. The host prepares the mailbox with the
Buffer write command value, the buffer address and the buffer size. The host then forces the device in
Applet mode using a TCL_Go command. The host polls the end of payload programming by trying to
read the state value in the mailbox. The device will answer to the host as soon as it returns to SAM-BA
monitor mode. In case of USB connection, when the host polls while the device is in Applet mode, the
device NACK IN packets sent by the host. Applet execution has to be short enough in order to prevent
from connection timeout error. In case of long programming or erasing operation, from time to time, the
device shall leave Applet mode to return to SAM-BA monitor mode in order to be able to achieve the cur-
rent pending host TCL_ReadInt command within the timeout threshold.

SAM-BA User Guide 9-1
6421B-ATARM—xx-xxx-11




Applets

Figure 9-1.

Applet Work Flow

Host

TCL_WriteDatalspiet, appletaddr)

TCL_WrteData(payload, appletBufferaddr)

Target

Load Applet

Load first playload

TEL_Wiritelnt{appletivy, applettrghddr)

Program
Payload
TCL_Readint{appletirg, applettrgiddr) G

TCL_wiritaData( applet, appletaddr) Load Applet

TCL_winteData(payload, appletsufforaddr) Load sacond
playlaad
TCL_Wtelnt{ appletarg, appletdrgaddr)

TCL_Go( applataddr)

Program
Payload
TCL_Readintiappletarg, appletirgaddr) G

9.2 Applet Startup

Applet startup code (isp_cstartup.s or isp_cstartup.c) initializes the system before the main function
(memory initialization, read/write operation) of the applet is called. The users must ensure that the
startup code is located at the dedicated memory addresses. Applet startup code must be placed in vola-
tile memory RAM, SDRAM or DDRAM.

During start-up sequence, the BSS segment shall be cleared. Once loaded, the applet may be invoked
several times to execute the same or different commands. To keep global variable values, the BSS seg-
ment initialization must be done only once. In isp_cstartup.s or isp_cstartup.c, the Initialized variable is
tested to prevent multiple BSS initialization.

In isp_cstartup.s:

/* Check the is_initialized flag */

[ dr ro, [pc, #-(8+.-islnitialized)]
nmov rl, #0

cnp ro, r1

bne 2f

/* Clear the zero segnent */

| dr r0, =_szero
| dr rl, =_ezero
nmov r2, #0

1
cnp ro, rl
strcc r2, [r0], #4
bcc 1b

/* Update the is_initialized flag */

nov rl, #1
str rl, [pc, #-(8+.-islnitialized)]
2:
9-2 ‘_ IIIIEL@ SAM-BA User Guide

6421B-ATARM—xx-xxx-11



Applets

/* Branch to main()
******************/

In isp_cstartup.c:

if (isUnlnitialized == 1) {

pSrc = & sidata;

for(pDest = & sdata; pDest < & edata;) {
*(pDest ++) = *(pSrc ++);

}

for (pDest = & szero; pDest < & ezero;) {
*(pDest ++) = 0;
}

isUnlnitialized = O;

The stack pointer is initialized in the boot ROM. However, on some AT91SAM device revisions, each
time the system leaves SAM-BA Monitor mode after receiving a “GO” command, the stack pointer is not
reset to its initial value which produces a memory leakage. The workaround is to initialize the stack
pointer each time the applet is run. At the end of the applet, the stack pointer is set to the initial value and
the boot ROM is resumed.

/* Branch to main()
******************/

nov ro, #1

add ri, pc, #-(8+.-nail box)
[ dr r3, =main

nov lr, pc

bx r3

/* Junp back to SAM BA Boot

**************************/

| dnfd sp!, {r0}
bx ro

Each time a GO command is executed, the boot ROM resets PIO. Applets must configure PIO each time
it is resumed.

A mailbox shared between applet and host application is located at the beginning of the execution
region, just behind the jump instruction. Then it is easy for the host application to determine where the
mailbox is located.

For SAM7 and SAM9, mailbox address = applet load address + 4.
For SAMS3, mailbox address = applet load address + 0x40.

ATMEL

SAM-BA User Guide I ) 9-3

6421B-ATARM—xx-xxx-11




Applets

9.3 Runtime Operations

Except for devices without EBI (SAM7S ...), for internal flash applets, and for the applet used to initialize
the external RAM itself, all the other applets are compiled to run at the beginning of the external RAM.
That's why an external memory (SDRAM / DDRAM) must be correctly initialized.

The external RAM init is automatically done when SAM-BA starts. This is achieved in TCL by the
at91sam9263-ek.tcl file that loads the extram applet (isp-extram-at91sam9263.bin) in the internal SRAM
of the chip and sends the INIT command to this applet.

The extram applet has only an INIT command that configures the EBI timings and tests if the accesses
to the RAM are OK.

m Once the external RAM is initialized, SAM-BA can use it to store other applet code and data to
program external flash (for example, Dataflash or Nandflash). This step is done when users execute
the Enable Nandflash script in SAM-BA GUI Nandflash pane: the Nandflash applet (isp-nandflash-
at91sam9263.bin) is loaded at the beginning of the EXTRAM and the INIT command is written in the
mailbox.

m Once the external RAM initialization failed, SAM-BA is not able to store other applet code to the
external ram and a dialog box appears as well. It is recommended to press No to quit SAM-BA, and
double check the hardware connection of external RAM or configuration of SDRAM/DDRAM in
applets.

Figure 9-2.  External RAM Initialization Failed

g External RAM init. =0 x|
External RAM initialization failed.
External RAk access iz required to run applets.
Continue angay 7

ez Ma

9.4 Applet Mailbox

9-4

The 32 4-byte words mailbox definition must be shared between the applet and the host application. By
default, the first word of the mailbox initialized by the host application corresponds to the applet function.
The other words may be used as applet function arguments. The first word is used by the application to
determine whether the applet function is achieved. The second word of the mailbox set by the applet cor-
responds to the result of the applet function. Other words can be used as values returned by the applet
function. Memory space located after the applet binary code can be used as a dedicated area to store
buffer payloads received in Boot ROM mode and programmed in the media by the applet. A good prac-
tice is to implement an applet INIT function which returns the address of this memory space.

Applet Init Process Example Using Mailbox

** Structure for storing paraneters for each command that can be performed by
the applet. */
struct _Mail box {

/** Conmand send to the nonitor to be executed. */
uint32_t command;
/** Returned status, updated at the end of the nonitor execution.*/

uint32_t status;
AIMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



Applets

/** I nput Argunments in the argunment area*/

uni on {
[** I nput argunents for the Init conmand. */
struct {

[ ** Communi cation |ink used.*/

ui nt 32_t conlype;

[**Trace | evel .*/

uint32_t tracelLevel

[** Serial flash index.*/

ui nt 32_t at 251 dx;
} inputlnit;
[** Qutput argunents for the Init command. */
struct {

[** Menory size.*/

uint32_ t nenorySi ze;

[** Buffer address.*/

ui nt 32_t bufferAddress;

[** Buffer size.*/

uint32_ t bufferSize;
} outputlnit;
[** I nput argunents for the Wite command. */
[** Qutput argunents for the Wite comand. */
[** Input argunents for the Read conmand. */
[** Qutput argunents for the Read command. */

} argunent;
1
int main(int argc, char **argv)
{
struct _Mil box *pMilbox = (struct _Milbox *) argy;
[* INIT */
if (pMail box->comand == APPLET_CMD INIT) {
pMai | box- >st at us = APPLET_SUCCESS;
}
pMai | box- >comand = ~( pMai | box- >conmand) ;
return O;
}

TCL Send Init Example Using MailBox

proc GENERIC: : I nit
{appl et Addr appl et Mai | boxAddr appl et Fi | eNane {appl et ArgLi st 0}} {
gl obal target
# Load the applet to the target
if {[catch {GENERI C: : LoadAppl et $appl et Addr $appl et Fi | eNamre} dunmmy_err]}

error "Appl et $appl etFil eName can not be | oaded" }
# Mail box is 32 word |l ong (add vari able here if users need read/wite nore

dat a)
AIMEL

SAM-BA User Guide I ) 9-5
6421B-ATARM—xx-xxx-11




Applets

set appl et Addr Cnd [ expr $appl et Mai | boxAddr]

set appl et Addr St at us [ expr $appl et Mai | boxAddr + 0x04]
set appl et Addr Argv0 [expr $appl et Mai | boxAddr + 0x08]
set appl et Addr Argvl [ expr $appl et Mai | boxAddr + 0xO0c]
set appl et Addr Argv2 [expr $appl et Mai | boxAddr + 0x10]
set appl et Addr Argv3 [ expr $appl et Mai | boxAddr + 0x14]

# Wite the Cnd op code in the argunent area
TCL_ Wite Int $target(handle) $appletCnd(init) $appl et Addr Cnd} dummy_err]

set argldx O

foreach arg $appl et ArglLi st {
# Wite the Cnd op code in the argunent area
TCL_Wite_Int $target(handle) $arg [expr $appl et Addr Argv0 + $ar gl dx]
incr argldx 4

}

# Launch the applet Junping to the appl et Addr

set result [GENERIC: : Run $appl et Cnmd(init)]

9.5 Build Applets

9.5.1 Required Tools for Compilation Applets

9.5.2 Make

Here are the tools that the users will need to successfully recompile the applets for their boards.

A GNU compiler toolchain (for example, the Sourcery G++ for ARM EABI by Codesourcery:
http://www.codesourcery.com/).

A make utility and also cp, mkdir, and rm commands (Can be found in GNUWin32 packages
(http://gnuwin32.sourceforge.net/) that are win32 adaptation of very useful unix tools).

All make command lines to be executed to compile each applet for each board&memory can be found in
sam-ba 2.11\applets\build.log file. Usually, the users won't need to recompile all the applets for all of the
boards, but just copy the command line from build.log concerning the applet/board they want to compile.

For example, to build a dataflash-applet on at91sam9m10-ek/at91sam9m10 with sram:

make cl ean BOARD=at 91sam®nil0- ek CHI P=at 91san®nil0 sram

9.6 Applets Initialization and Usage

9.6.1 Memory Programming Principle

9-6

The mechanism used by SAM-BA to program a non-volatile memory is based on the principle of an
applet running on the target, and that handles the programming algorithm. An applet is usually a rather
small program which can program a certain non-volatile memory device, or a family of devices. The
applet consists of a small set of functions, mainly for erasing or writing designated portions of the flash

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



9.6.2

External Memory

Applets

SAM-BA applet supports on-board external flash memory, NAND flash, NOR flash, DataFlash, Serial
Flash and EEPROM devices. To be able to program one memory, the applet must be loaded in the
SRAM or external RAM (SDRAM, DDRAM, PSRAM) of the target (it depends on the chip), and the
applet must perform the initialization of the memory.

These two steps are done automatically when the user runs the Enable Flash, Enable Nandflash,
Enable Dataflash, ... script in the corresponding memory pane. Then, the user can use the send file,
receive file and other scripts for this memory.

To program another memory, the user must run the Enable ... script for this memory.

All the boards can normally access the flash or external memory which is shown as x, and some paths
are forbidden or simply not wired, shown as “-” in Table 9-1.

Table 9-1. Board VS. Memory

sdram

ddram

flash

dataflash

serialflash

nandflash

norflash

eeprom

onewrire

sam3a

X

X

X

sam7x/7xc

X

sam7s

X

sam7Il

sam7se

sam3n

sam3s

X | X [X |X |[X [X |X

sam3u

X

sam3x

x

sam9260

cap9

sam9261

sam9263

sam9gi10

sam9g20

X [ X X [X [X X

sam9gi15

X,
&£

sam9g25

sam9g35

sam9x25

sam9x35

X [ X X |X

sam9g45

sam9m10

sam9rl

sam9xe

X

X

X [ X X X | X [X X |X |[X [X |[X |[X |[X X |X

X [ X X X | X [X X |X |[X [X |[X |[X |[X X |X

sam9ni2

X

X

X

X X X X [X [X |[X |[X |[X |X X |[X |[X |X |X [X

X X X | X |[X

X [ X X |[X [X [X |[X |[X |[X |X |[X |[X |[X |X |X [X

Notes:

SAM-BA User Guide

1. Only provide NAND flash applet for sam3s4.

ATMEL

2. Only provide NAND flash applet for sam3x8 and sam3x4.
3. DDRAM/SDRAM is dedicated by variable extRamType in at91sam9g15.tcl.

9-7

6421B-ATARM—xx-xxx-11




Applets

ATMEL

9-8 I O SAM-BA User Guide
6421B-ATARM—xx-xxx-11




ATMEL

Y

Section 10

SAM-BA TCL Scripts

10.1 Scripts Overview

The runtime directory for SAM-BA is <INSTALL FOLDER>\tcl_lib.

All the files required by SAM-BA when it is running are under this folder.

Figure 10-1. TCL Scripts Structure

devices directory

devices.kcl

boards.tcl

All device header files are in TCL format.

One device.tcl lists all device names or alias names and the corresponding device IDs.

device.tcl example:

array set devices {

SAM-BA User Guide

0x260a0940
0x27330740
0x27280340

0x019803a0
0x019703a0
0x019607a0
0x819903a0
0x019905a0
0x819a05a0

at 91sanva3
at 91sanvl 128
at 91sanvs32, at 91sanvse321

at 91sanP260
at 91sanb261
at 91sanD263,
at 91sanBgl0
at 91sanBg20
at 91sanBgl5, at 91sanBg25, at 91sanBg35, at 91sanbx25, at 91sanBx35

10-1

6421B-ATARM—xx-xxx-11



SAM-BA TCL Scripts

0x819b05a0 at 91sanBDg45, at 91sandnil0
0x019b03a0 at 91sandrl 64

boards.tcl

boards.tcl example:

array set boards {

"at 91sanBs4- ek" "at 91sanBs4- ek/ at 91sanBs4-ek.tcl "

"at 91sanBs8- ek" "at 91sanBs8- ek/ at 91sanBs8-ek.tcl "

"at 91sanBu4- ek" "at 91sanBu4- ek/ at 91sanBu4-ek.tcl "

"at 91sanvs32- ek" "at 91san¥s32- ek/ at 91sanv¥s32-ek.tcl "
"at 91lsani¥s321- ek" "at 91sanvs321- ek/ at 91sani¥s321-ek.tcl "
"at 91san¥x256- ek" "at 91sanVx256- ek/ at 91sani¥x256-ek.tcl "
"at 91sanD260- ek" "at 91sanP260- ek/ at 91sanD260-ek. tcl "
"at 91sanb261- ek" "at 91sanb261- ek/ at 91sanb261-ek.tcl "
"at 91sanD263- ek" "at 91sanP263- ek/ at 91sanbD263-ek. tcl "
"no_board" "no_board/ no_board.tcl”

board files directory

Several board specific folders (for example, into at91sam9263-ek\ for SAM9263), contain the applet
binary files and the TCL file used to describe the SAM-BA GUI for each board (what memory is on the
board, what is the applet name for each memory ...).

common files directory

A common files directory, with all generic TCL scripts used to load applets, perform read/write
operations.

10.2 Board Description File

Board description files accomplish the link between applets and generic transfer routines running on the
host PC. Several hash tables list memory algorithms which apply to the board and parameters.

The first array found in the board description file lists the memory modules present on the board.

Note: some devices such as Peripheral or REMAP can also be found here, but are just address ranges
displayed in the Memory Display window.

10.2.1 Memory Scripts Example:
array set nmenoryAl go {

" SRAM' "::sanBgl5_srant
" SDRAM' "::sanmBgl5_sdrant
" DDRAM' "::sanBgl5_ddrant
" Dat aFl ash AT45DB/ DCB" "::sanmBgl5_dat af | ash"
10-2 A_ IIIIEL@ SAM-BA User Guide

6421B-ATARM—xx-xxx-11



SAM-BA TCL Scripts

"Serial Fl ash AT25/ AT26" "::sanBgl5 serial flash"

" EEPROM AT24" "::sanmBgl5_eepront

"NandFl ash" "::sanBgl5 nandfl ash"
"DDR2 / SDRAM Map" "::sanmBgl5_ddr2_sdram nmap"
"Peripheral " "::sanBgl5 peripheral"

" ROM' "::sanmBgl5_ront

" REMAP" "::sanBgl5 _remap”

}

The first 7 entries correspond to the seven Memory Download tabs.

Figure 10-2. Memory Pane

DDRAM | DiatoFlash AT4EDB/OCE | EEPROM AT24 | MandFlash | SDRAM | SRaM  SerialFlash AT25/AT26

Download ¢ Upload Fil
Send File Mame | = Send File
Receive File Mame | = Receive File
Addiess lM— Size [For Receive File] W bytels] Compare sent file with memory
Script
’]Enahla Serialflash (SPID C50) ﬂ Execute I ‘

A memory module array is defined for each module declared in the memoryAlgo array.

10.2.2 NAND Flash Module Declare Example
array set sanBgl5 nandfl ash {
dftDisplay 1
dftDefault O
df t Address 0x0

dft Si ze "$CGENERI C: : nenorySi ze"

df t Send "GENERI C: : SendFi | e"

df t Recei ve "GENERI C.: Recei veFi| e"
dftScripts "::sanBgl5 nandfl ash_scripts"

m dftDisplay: indicates if the memory appears as a Memory Download tab (0: no, 1: yes).

m dftDefault: set to 1’ if this memory tab shall be selected when SAM-BA starts (There shall be one
default memory tab among all memory tabs).

m dftAddress: base address of the memory module (0x0 for memories not physically mapped, like
DataFlash, or when accesses are not directly done, a monitor is needed, like NAND Flash).

m dftSize: size of the memory module.

m dftSend: send file procedure name.

m dftReceive: receive file procedure name.

m dftScripts: name of the array containing the script list, see Table 11-1 (blank if no script is
implemented).

Scripts can be implemented for each memory module. Common uses are SDRAM initialization, Flash
erase operation, or any other frequently used operations. The scripts are displayed in the script listbox of
the corresponding memory tab. Their declaration is done by creating an array named in the dftScripts
field of the memory.

ATMEL

SAM-BA User Guide 10-3

6421B-ATARM—xx-xxx-11




SAM-BA TCL Scripts

10.2.3 NAND Flash Memory Scripts Example
array set sanBgl5 nandfl ash_scripts {

"Enabl e NandFl ash" " NANDFLASH: : I ni t"
"Prrecc configuration” " NANDFLASH: : NandHeader Val ue"
"Enabl e OS PMECC paraneters" "NANDFLASH:. : NandHeader Val ue HEADER
0xc0c00405"
"Send Boot File" " NANDFLASH: : SendBoot Fi | ePnecc"
"Erase A" " NANDFLASH: : Er aseAl | "
"Scrub NandFl ash" " NANDFLASH: : Er aseAl |
$NANDFLASH: : scr ubEr ase"
"Li st Bad Bl ocks" " NANDFLASH: : BadBIl ockLi st "

}

The first field of each entry is the string displayed in the listbox, and the second is the procedure name
invoked when executing the script.

ATMEL

10-4 I O SAM-BA User Guide
6421B-ATARM—xx-xxx-11




ATMEL

Y )
Section 11

NAND Flash with PMECC Interface

Some AT91SAM devices are embedded with MLC/SLC NAND Controller, with up to 24-bit Programma-
ble Multi-bit Error Correcting Code (PMECC), such as SAM9G15, SAM9X25 devices.

SAM-BA 2.11 supports NAND flash accessing with PEMCC.

11.1 NAND PMECC Interface
The NAND Flash scripts are displayed in the script listbox of the corresponding NandFlash tab.

There are two particular scripts for PMECC, Pmecc configuration and Enable OS PMECC
parameters.

Figure 11-1. NAND Flash with PMECC Menu

DDREM | DataFlash AT4SDB/DCE | EEPAOM AT24  MandFlash | SDRAM | SRAM | SerisFlach AT25/4T26

Download / Upload Fil
= Send File

Receive Filz

Send File Name : |
Receive File Name : | =

Address : IUxD Size [Far Receive File] : | 01000 buyte(s)

Scripl
Enable MandFlash F Execute |

Compare zent file with memony

Enable MandFlash
—|Enable 05 PMECT parameters
——fErase Al
-List Bad Blacks dHeaderValue pmeccParam pmeccParamiyalue' command, -l
ation current prrecc configuration.
Send Boot File Flp for pmece setting,
- Tz T T ST e R o= rrmiand,
- Recommand to erase all after the ecc mode switch between software ECC & pmecc.
(SAM-BA v2.10) 14 %
Nink\ARMI]| Board at31sam9915-ekl4

11.1.1 Pmecc Configuration
Figure 11-2. NAND Flash PMECC Configuration Window

1=}

Ecc type
‘ @ pmecc { software ece ¢ noecc

Prnecc boot header configuration

MNumber of sectars per page I 4 b
Spare size |B4
Mumber of ECL bits required|2 h

Size of the ECC sector % B12 1024

Ecc offset |2

I™" Trimi{itset of the first ECC byte in the spart

)8 | Cancel

11-1

SAM-BA User Guide
6421B-ATARM—xx-xxx-11




NAND Flash with PMECC Interface

11.1.1.1 Ecc Type

11.1.1.2 Pmecc

11-2

m pmecc NAND Flash write/read and boot with pmecc
m software ecc NAND Flash write/read with software (Hamming code) ecc, boot file without ecc
m noecc NAND Flash write/read/boot without ecc

Boot Header Configuration
m Programmable sector size & Number of sectors per page

The NAND Flash sector size is programmable and can be set to 512 or 1024 bytes. The ECC computa-
tion is based on this configuration. Number of sectors per page can be 1, 2, 4 or 8 depending on page
size of NAND flash device.

Table 11-1 gives an overview of all supported PAGESIZE & SECTORSZ configuration on different page
size (512/1024/2048/4096/8192 bytes). Some paths are forbidden and shown as “-” in the table.

Table 11-1. Supported PAGESIZE & SECTORSZ Configuration on Different Page Size

(512/1024/2048/4096/8192 bytes)

Sector Size 512 Bytes Sector Size 1024 Bytes
Sectors Per Page 1 2 4 8 1 2 4 8
Page Size 512 X - - - - - - -
Page Size 1024 - X - - X - - -
Page Size 2048 - - X - - X - -

| Page Size 4096 - - - X - - X -
Page Size 8192 - - - - - - - X

m Programmable Error Correcting Capability and Spare size

PMECC supports 2, 4, 8, 12 and 24 bits of errors per sector correcting. The PMECC module generates
redundancy at encoding time. Table 11-2 shows number of relevant ECC bytes per sector with different
correcting capabilities.

Table 11-2. Number of Relevant ECC Bytes per Sector

Sector Size 512 Bytes Sector Size 1024 Bytes
Correcting Capability 2 4 8 12 24 2 4 8 12 24
Number of ECC bytes 4 7 13 20 39 4 7 14 21 42

When a NAND write page operation is performed, the N-byte redundancy should be appended to the
page and written in the spare area. The size of spare area should be preliminarily configured in Spare
Size field.

N = Number of ECC bytes x Sectors per Page

For example, NAND flash page size is 2048 bytes. Configure 512-byte sector size, correct 4-bit errors,
and then the number of ECC bytes is 7 (See Table 11-2).

N=7X4 =28

Table 11-3 gives an example of supported correcting capability configuration on different page size
(512/1024/2048/4096/8192 bytes). However, some cases are not supported, such as 12-bit error correc-

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



NAND Flash with PMECC Interface

tion on 2048 page size NAND flash. The size of ECC redundancy is 80 bytes, and there is not enough
space in spare area (total 64 bytes) to be written. In such case it is shown as “-” in the table.

Table 11-3. Example of Correcting Capability Configuration on Different Page Size
(512/1024/2048/4096/8192 bytes)

Sector Size 512 Bytes Sector Size 1024 Bytes
Correcting Capability 2 4 8 12 24 2 4 8 12 24
Page Size 512 + 16 4 7 13 - - - - - - -
Page Size 1024 + 32 8 14 26 - - 4 7 14 21 -
Page Size 2048 + 64 16 28 52 - - 8 14 28 42 -
Page Size 4096 + 224 32 56 104 160 |- 16 28 56 84 168
| Page Size 8192 + 256 - - - - - 32 56 112|168 |-

m Programmable Error Start Address

ECC Area contains the redundancy value which is generated by PMECC and is appended to the page
and written in ECC area by processor.The start address indicates the first byte address of the ECC area.
Location 0 matches the first byte of the spare area. It is programmable by writing ECC Offset field.

End Address = Start Address + Total number of ECC bytes

For example, NAND flash page size is 2048 bytes. Sector size is 512 bytes, correct 4-bit errors, and the
number of ECC bytes is 7 (See Table 11-2) , and the total number of ECC bytes is 28 bytes (See Table
11-3). If start address of ECC area is set as 2, the end address of ECC area is 2 + 28 = 30.

Note: If the end address value is large than spare area size of NAND flash device, it will lead to unpre-
dictable behavior.

11.1.1.3 Trim setting

Some UBI images (in Linux) to be sent to NAND Flash contain UBIFS file system, the users may have to
drop OxFF bytes at the end of the input PEB data. The reason for this is that UBIFS treats NAND pages
which contain only OxFF bytes as free. For example, suppose the first NAND page of a PEB has some
data, the second one is empty, the third one also has some data, the fourth one and the rest of NAND
pages are empty as well. In this case UBIFS will treat all NAND pages starting from the fourth one as
free, and will write data there.

An alternative to this approach is to enable the Trim setting option when writing the pages to NAND
Flash. This allows that the flash don’t have to encode OxFF bytes with PMECC algorithm at the end of
PEBs.

11.1.2 Enable OS PMECC Parameters

This script is a shortcut configuration for u-boot, kernel. It sends NandHeaderValue command in TCL
file:

"Enable OS PMECC parameters" "NANDFLASH::NandHeaderValue HEADER 0xc0c00405"

ATMEL

SAM-BA User Guide I ) 11-3
6421B-ATARM—xx-xxx-11




NAND Flash with PMECC Interface

Users can also modify the value to satisfy special request. The header value ‘0xc0c00405’ means:

m Use PMECC
PMECC ecc offset is 48
512-byte sector

4 sectors per page

2-bit error correction per sector

11.2 PMECC Header Configuration in Command Line

Command line: NANDFLASH::NandHeaderValue {pmeccParam pmeccParamValue}

Type NANDFLASH::NandHeaderValue ? to get help

NANDFLASH::NandHeaderValue usePmecc x (x = 0 no pmecc, x = 1 use pmecc)
NANDFLASH::NandHeaderValue sectorPerPage x (x = 0111213 for 1121418 sectors of data per page)
NANDFLASH::NandHeaderValue spareSize x (0<x<512, x is size of spare zone in bytes)
NANDFLASH::NandHeaderValue eccBitReq x (x = 011121314 for 21418112124 bits of errors per sector)

NANDFLASH::NandHeaderValue sectorSize x (x = 0l1 0: Pmecc sector size 512 bytes,1: Pmecc sector
size 1024 bytes)

NANDFLASH::NandHeaderValue eccOffset x (0<=x<512 x is offset of the first ecc byte in spare zone)

NANDFLASH::NandHeaderValue HEADER x (x is 32-bits-header, see 'NAND Flash Specific Header
Detection' in datasheet)

For example:

NANDFLASH: : NandHeader Val ue eccOf f ect 48

of fset of the first ecc byte in spare zone is 48, value = 0x30
NANDFLASH: : NandHeader Val ue HEADER 0xc0c00405

HEADER val ue i s 0xCO0C00405

Type NANDFLASH::NandHeaderValue to display current PMECC configuration

For example:
Type

NANDFLASH: : NandHeader Val ue

use Pmecc, value = 0x1

4 sectors of data per page, value = 0x2

spare zone in bytes is 64, value = 0x40

2 bits of errors per sector, value = 0x0

The PMECC conputation is based on a sector of 512 bytes, value = 0x0
of fset of the first ecc byte in spare zone is 48, value = 0x30
HEADER val ue i s 0xC0C00405

ATMEL

114 I O SAM-BA User Guide
6421B-ATARM—xx-xxx-11




NAND Flash with PMECC Interface

11.3  NAND Flash Boot

The NVM bootloader program supports NAND boot. For details on NAND Boot Procedures, refer to
product datasheet. SAM-BA script Send boot file supports sending a boot file with NAND Flash Spe-
cific Header.

11.4 Example of TCL Script for NAND Flash

HABHHH BB HHH R R HH R H TR R H R R R R R T R R R R T R R R R R R R R H
Mai n script: Load the linux deno in NAND Fl ash

HHBHHH BB HHH B R H TR R H A R R R R R R R R R T R R R R R R R RS
et bootstrapFil e"boot. bin"

set uboot Fil e"u-boot . bi n"

set kernel File“linux-kernel.bin "

## NandFl ash Mappi ng

set boot St rapAddr 0x00000000
set uboot Addr 0x00080000

set kernel Addr 0x00400000

## Fal shing binaries

puts "-1- === Initialize the NAND access ==="

NANDFLASH: : I ni t

puts "-1- === Enable PMECC OS Paraneters ==="

NANDFLASH: : NandHeader Val ue HEADER 0xc0c00405

puts "-1- === Erase all the NAND flash blocs and test the erasing ==="
NANDFLASH: : Er aseAl | NandFl ash

puts "-1- === Load the bootstrap: nandflash_at9lsanB-ek in the first sector

NANDFLASH: : SendBoot Fi | ePmeccCnd $boot strapFil e

puts "-1- === Load the u-boot inmage ==="
send_fil e {NandFl ash} "$ubootFile" $uboot Addr 0
puts "-1- === Load the Kernel inmage ==="

send_file {NandFl ash} "$kernel File" $kernel Addr 0

ATMEL

SAM-BA User Guide I ) 11-5
6421B-ATARM—xx-xxx-11




NAND Flash with PMECC Interface

ATMEL

11-6 I O SAM-BA User Guide
6421B-ATARM—xx-xxx-11




ATMEL

Y

Section 12
SAM-BA Customization

12.1 Add a New Board

To add support for a new board, a new device entry must be added in the devices array at first.

For example, users have their own boards with SAM9263 device; add alias user9263 in the original line
for SAM9263 device.

Modify [Install Directory]/ tcl_lib/devices/devices.tcl:

array set devices {
0x260a0940 at 9l1lsanva3
0x27330740 at9lsanvl 128
0x27280340 at9lsan¥s32, at 91saniVse321

0x019803a0 at 91sanD260

0x019703a0 at 91sanD261

0x019607a0 at 91sanD263, user 9263

0x819903a0 at91samBglO

0x019905a0 at 91sanPg20

0x819a05a0 at91sanBgl5, at 91sanBg25, at 91sanBbg35, at 91sanDx25, at 91sanbBx35
0x819b05a0 at 91sambg45, at 91sanmdmil0

0x019b03a0 at 91sandrl 64

}

Then, a new entry must be created in the boards array and the corresponding directory.

Add a board user9263-dk in user_boards array in [Install Directory]/ tcl_lib/boards.tcl.

array set user_boards {
"user9263- dk" "user 9263- dk/ user9263-dk.tcl "

}

The new board name will appear in the Select your board list when SAM-BA is started.

SAM-BA User Guide 12-1
6421B-ATARM—xx-xxx-11




SAM-BA Customization

12.2

12-2

Figure 12-1. Customer Board

il

Select the connection : | 4link WARMO
Select vour board © |userd263-dk

[~ Customize lowlevel [5t31 sam3m10-ekes
at31 zam3m10-g45-ek

C " | k37 zam3rEd-ak.
onnec k37 sam3=25-ak,
k37 sam3=35-ak,

at31 zam3=e1 28-ak,
a3t 31 sam3me256-ak,

3 |

a3t 31 zam3=e51 2-ak.

Modify Main Oscillator

In SAM-BA 2.11, there is a new feature, Customize lowlevel, which allows users to configure the
Master Clock (MCK) of the target device in an easier way.

In each board specific folder, there is a tcl/tk script named lowlevel.tcl. The <board>.tcl will call a
function, LOWLEVEL.::Init, which is defined in lowlevel.tcl.

In lowlevel.tcl, the list mainOsc(crystalList) contains all available crystal frequencies of the device. Users
can add a user-defined frequency to the list.

A dedicated applet, lowlevelinit applet, implements the low level initialization. Like other applets, the
address, the mailbox address and the applet name of this lowlevel applet are defined.

nanespace eval LONEVEL {

vari abl e appl et Addr 0x300000

vari abl e appl et Mai | boxAddr 0x300004

vari abl e appl et Fi | eNane "$l i bPat h(ext Li b)/ $t arget (board)/i sp-
| owl evel i nit-sanmBgl5. bi n"

}

There are three key parameters transferred to the applet by SAM-BA.
Mode specifies the mode of low level initialization.

If mode is EK_MODE, the applet will call EK_LowLevellnit() to configure the target device just the same
as EK does.

If mode is USER_DEFINED_CRYSTAL, the applet will call user_defined_Lowlevellnit() to configure the
target device, which should be implemented by users. A selected frequency will be passed to this func-
tion as a parameter, named crystalFreq.

If mode is BYPASS_MODE, the target device should be configured to be clocked by an external clock.
Function bypass_LowLevellnit() should be implemented by users to complete the configuration. A
specified frequency will be passed to this function as a parameter, named extCIk.

CrystalFreq is the selected frequency of the crystal oscillator. The value of the frequency is one of those
in the list mainOsc(crystalList), which is defined in lowlevel.tcl. CrystalFreq is used by
user_defined_Lowlevellnit() when mode is USER_DEFINED_CRYSTAL.

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



SAM-BA Customization

Extclk is the specified frequency of the external clock of the target device. The value of the frequency is
specified by users in SAM-BA GUI. Extclk is used by bypass_Lowlevellnit() when mode is
BYPASS_MODE.

switch (node) {
case EK_MODE:
EK _LowLevel I nit();
pMai | box->st at us = APPLET_SUCCESS;
br eak;
case USER DEFI NED_CRYSTAL:
user _defined_Low evel I nit(crystal Freq);
pMai | box- >status = APPLET_DEV_UNKNOWN;
br eak;
case BYASS_ MODE:
bypass_LowLevel I nit (extd k) ;
pMai | box- >status = APPLET_DEV_UNKNOWN;

defaul t:
pMai | box- >status = APPLET_DEV_UNKNOWN,;
br eak;

}

If user’'s board mounts a crystal of a frequency different from that on the EK board or the target device is
clocked by an external clock, function user_defined_Lowlevellnit() or bypass_LowLevellnit() should be
implemented in advance and the lowlevel applet needs to be re-compiled and replace the one in the
board specific folder. For information on how to implement the low level initialization, please refer to
EK_LowLevellnit().

To customize low level initialization, Customize lowlevel must be checked in SAM-BA GUI before
pressing Connect.

Figure 12-2. Connect with Board

g SAM-BA 2.11

Select the connection ;| [EE]ERE

Select your board : ﬂ
JLink speed |

v Customize lovwlevel

Connect | m

In Customize oscillator window, the users should choose the on board crystal frequency in the pull-down
menu. The frequency will be passed to the lowlevel applet as the parameter crystalFreq.

ATMEL

SAM-BA User Guide I ) 12-3
6421B-ATARM—xx-xxx-11




SAM-BA Customization

Figure 12-3. Select Customer Crystal

iy Customize at91sam9261-ek oscillator E”§|g|

Select on board cryztal: | 3000000 F

e

Bypass mode o 7RRMN

[ Bygagac4nn

3340000 —

4000000
4433619

%% lsosonn I

4915200

5000000
5242820 b

If there is no frequency matched with the one on user’s board, please add the value in the list
mainOsc(crystalList) defined in <board> lowlevel.tcl.

If user's board is clocked by an external clock, check Bypass Main Oscillator and fill the frequency of
the external cock in External Clock (in Hz). This value will be passed to the lowlevel applet as the
parameter extCIk.

Figure 12-4. Select Customer External CLK

kg Customize at91sam9261-ek oscillator E”E|E|

Select on board crystal: |

Bypazz mode

¥ Bypaszs Main Dscillator
Enternal Clock [in Hz] |2EDDDDDE|

Set | Cahicel |

If Bypass Main Oscillator is checked, the mode is BYPASS_MODE after pressing Set button. If
Bypass Main Oscillator is unchecked, the mode is USER_DEFINED_CRYSTAL. If pressing Cancel
button, no matter what frequency is specified, the mode is EK_MODE.

12.3 Modify Pinout

12-4

Since the dataflash/serialflash is connected to pins different from those on the EK board, users need to
indicate it to the applet. As it is a board specific configuration, users need to edit the
applets\at91lib\boards\at91sam9263-ek\board.h file. Look for the SPIO pin definitions in the PIO defini-
tion section. Add the definitions for SPI1 pins (please refer to the datasheet of the device):

/1] SPI'1 M SO pin definition.

#define PIN.SPI1_ M SO {1 << 12, AT91C BASE PI OB, AT91C | D PI 0B,
Pl O_PERI PH_A, Pl O_PULLUP}

{11 SPI'1 MOSI pin definition.

#define PIN_SPI1_MOSI {1 << 13, AT91C BASE PI OB, AT91C | D PI 0B,
Pl O PERI PH A, Pl O PULLUP}

/1] SPI'1l SPCK pin definition.

#define PIN SPI1_SPCK {1 << 14, AT91C BASE_PI OB, AT91C | D PI OB,
Pl O PERI PH_A, PI O _PULLUP}

/11 SPI1 peripheral pins definition (includes SPCK, M SO & MOSI).

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



SAM-BA Customization

#define PINS_SPI 1 PIN.SPI1_M SO PIN_SPI1_MOSI, PIN_SPI1_SPCK
/1] SPI1 chip select O pin definition.
#define PIN_SPI1_NPCSO {1 << 15, AT91C BASE PI OB, AT91C | D PI 0B,

Pl O PERI PH_A, PI O PULLUP}

The pin structure for these definitions is simple:

m Index of the PIO in the PIO controller ((1 << 12) for PIOB12)
m Base address of the PIO controller corresponding to the pin
m |D of the peripheral in the PMC

Look now for the external memories part in the same file, find the BOARD_AT45 definitions and write
new definitions for the dataflash.

/11 Base address of SPI peripheral connected to the dataflash.

#defi ne BOARD_AT45_A SPI _BASE AT91C BASE_SPI 1

/11 ldentifier of SPI peripheral connected to the dataflash.
#defi ne BOARD AT45 A SPI _ID AT91C I D SPI 1

/11 Pins of the SPI peripheral connected to the datafl ash.
#defi ne BOARD AT45 A SPI_PI NS PINS SPI 1

/1] Dataflash SPI nunber.

#defi ne BOARD AT45_A SPI 1

/1l Chip select connected to the datafl ash.

#defi ne BOARD AT45 A NPCS 1

/1] Chip select pin connected to the datafl ash.

#defi ne BOARD _AT45 A NPCS PI N PI N_SPI 0_NPCS1

Note that the A in names refers to dataflash 0 in SAM-BA GUI TCL file. If users want a second one to be
defined, add BOARD_AT45_B... definitions, it will be usable as dataflash 1 in SAM-BA GUI.

Users can compile the applet now. Open a command line terminal, and change the current directory into
applets\isp-applets\dataflash. Copy the make command for dataflash on SAM9263 from the
applets\build.log file and paste it in the terminal:

make cl ean BOARD=at 91san®263- ek CHI P=at 91san®263 sdr am

Press Enter, and users will get a new dataflash applet in the bin subfolder. Be careful that this new
applet is automatically copied after built in target folder:

SAM-BA v2.11\applets\isp-project\tcl_lib\at91sam9263-ek

Users may need to backup the existing one in runtime folder:

SAM-BA v2.11\tcl_lib\at91sam9263-ek

At last, they may overwrite the existing applet binary from the target folder to sam-ba runtime folder.

If users want, they can edit the tcl_lib\at91sam9263-ek\at91sam9263-ek.tcl file to modify the text dis-
played in SAM-BA Dataflash script Listbox. Find the dataflash script array definition and fix the text
Enable Dataflash with SPI1:

ATMEL

SAM-BA User Guide I ) 12-5
6421B-ATARM—xx-xxx-11




SAM-BA Customization

array set at9lsanbP263 dataflash_scripts {
"Enabl e Dataflash (SPI1 CSO)" "DATAFLASH.:Init 0"
"Set DF in Power-O-2 Page Size node (Binary node)" "DATAFLASH: : Bi nar yPage"
"Send Boot File" "ENERIC:: SendBoot FileGUJ "
"Erase All" "DATAFLASH: : EraseAl | "

The parameter ‘0’ given to the DATAFLASH::Init script is related to the NPCS index of the dataflash in
the applet. Take a look at the main.c file of this applet to find the dataflash descriptor array.

Users can try it now: launch SAM-BA GUI, select the Dataflash pane and execute Scripts>Enable
Dataflash (SPI1 NPCSO0). The dataflash should be correctly detected, and they can read/write files into
it.

12.4  Check Point When Failed to Access Customer External Memory

12.4.1 SDRAM/DDRAM Access
m Check Hardware connection

— Check pin definition and data bus width .Please refer to SMC section in product datasheet for
Connection to External Devices description.

m Check sdram/ddram initialization

— Please refer to function BOARD_ConfigureSdram or BOARD_ConfigureDdram in
board_memories.c.

— Please refer to DDR/SDRAM Controller section in product datasheet for Initialization Sequence
description.

12.4.2 NAND Flash Access
m Check hardware connection

— Check pin definition and data bus width. Please refer to SMC section in product datasheet for
Connection to External Devices description.

— Check EBI chip selection and NAND data bus selection. Please refer to EBI Chip Select
Assignment section in product datasheet.

m Check SMC timing
— Please refer to function BOARD_ConfigureNandFlash in board_memories.c.

— Please refer to SMC section in product datasheet for Standard Read and Write Protocols
description.

m Check device ID of the NAND flash
— Please refer to NAND module list table in NandFlashModeList.c (located in the applets directory).

— If the device ID of the nandflash used is in the table, users must ensure that the nandflash
characteristics (Bus Width, Page Size, Memory Size, Block size) are in line with the table, as the
Static Memory Controller (SMC) is configured accordingly.

— The table can be modified and the nandflash applet can be re-compiled if needed.

12.4.3 DataFlash & Serial Flash Access
m Check hardware connection
— Check pin definition.

ATMEL

12-6 I O SAM-BA User Guide

6421B-ATARM—xx-xxx-11




SAM-BA Customization

m Check device ID of the DataFlash
— Please refer to at45 device descriptor table in at45_spi.c (located in the applets directory).
— Make sure the device ID of the DataFlash is in the table.
m Check device ID of the serial flash
— Please refer to At25Desc device descriptor table in at25_spi.c (located in the applets directory).
— Make sure the device ID of the DataFlash is in the table.

12.4.4 NOR Flash Access
m Check hardware connection

— Check pin definition and data bus width. Please refer to SMC section in product datasheet for
Connection to External Devices description.

— Check EBI chip selection and NAND data bus selection. Please refer to EBI Chip Select
Assignment section in product datasheet.

m Check SMC timing
— Please refer to function BOARD_ConfigureNorFlash in board_memories.c.

— Please refer to SMC section in product datasheet for Standard Read and Write Protocols
description.

m Check device ID of the NAND flash

— NOR flash applet only supports CFl-compatible NOR flash memories that support programming
algorithm 1, 2, or 3 (Intel/Sharp Extended Command Set, AMD/Fujitsu Standard Command Set
and Intel Standard Command Set).

— Please refer to NorFlashCFl.c in applet source code.

— For more information about the CFI specification, refer to the JEDEC Common Flash Interface
standard JESD68.01 and JEDEC publications JEP137x, available on the JEDEC Solid State
Technology Association standards organization website (www.jedec.org).

1245 EEPROM Access
m Check hardware connection
— Check pin definition
m Check device address

— EEPROM DEVICE/ADDRESSES (A2, A1, A0): The A2, A1 or A0 pins are device address inputs
that are hardwired or left not connected for hardware compatibility with other AT24CXX devices.

— Modify eepromDeviceAddress to meet the hardware connection in board tcl script file. For
example, variable eepromDeviceAddress 0x51 in at91sam9g15.tcl.

m Check device parameter of the EEPROM
— Please refer to at24Devices list table in main.c (located in the applets eeprom directory).

— If the device parameter of the eeprom used is in the table, users must ensure that the EEPROM
characteristics (Page Size, Memory Size) are in line with the table, as described in AT24Cxx
specification.

&El@ 12-7

6421B-ATARM—xx-xxx-11

SAM-BA User Guide




SAM-BA Customization

ATMEL

12-8 I O SAM-BA User Guide
6421B-ATARM—xx-xxx-11




ATMEL

Y

Section 13
OTP Interface

Some AT91SAM devices are embedded with One Time Programming (OTP) bits. When the OTP bit is
set, it is seen as ‘1’. The Read/Write functions are handled by the fuse controller block.

13.1 OTP Interface
Launch SAM-BA GUI, select the OPT pane and execute Enable OTP script.

Figure 13-1. OTP Interface

DDR&M | EEPROM &T24 | MandFlash  OTP | SRAM | SerialFlash AT25/4T26 |
— Download ¢ Upload File

Send File Hame : I =
Receive File Hame : | =
Address IDHD Size [For Receive File] : ID:-:'I Qoo bute[z]
— Scripts
IEnabIe aTe F E xecute

13.2 OTP read
Execute OTP Read all script to read all OTP status.

Figure 13-2. OTP Read

Scriptz
’7|DTF' Read 4l [ )|

[31:0] Dx00000000
(63132 ] Ox00000000
[95 64 ] 0x00000000
[127:96] 0x00000000
[159:12E] 0x00000000
[191:160] 0x00000000
[223:192] 0x00000000
(255224 ] 000000000
[257:256] 0x00000000
[319:288] Ox00a20000]

SAM-BA User Guide 13-1

6421B-ATARM—xx-xxx-11




OTP Interface

13.3 OTP Fuse

13-2

Execute OTP Fuse script to program OTP bits.

Figure 13-3. OTP Fuse Interface

—Fuza OTF

& 031 - 0oo] " [063: 032]

¢ [095 - 064] € [127 - 098]

" [153: 128] 191 - 160]

© [223:192] " [255: 224]

 [267: 256]

OTP data in [0400000000 & o 0s1 234abed

FUSE OTP|

=101 x|

Fuze CFG

Cw e JICRBRIECRICEICREICHR

FUSE EFGl

Cancel |

Fuse OTP bits

m Select OTP word address in radio button.
m Write DATA to be fused (Fuse data: 0x0012f00 @ OTP address [159:128]).

m Click FUSE OTP.

Figure 13-4. Fuse OTP

—Fuze OTF
€ [031 : 000) (063 : 032
(095 : 064] 127 098]
@+ [153:128]  [191: 160]
[223:192) (255 224]
" [287: 256]
OTP data in [(<00012F00 & g 01 234abed
FUSE OTP |

=101 %]

Fuze CFG

FTrw i elJFEFBRFECREICRIECRICR

FUSE EFGl

Cancel |

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



OTP Interface
m The fuse operation must be hand checked by user with warning information.

Figure 13-5. OTP Fuse Confirmation Message Dialogue

i

The OTP bits in [159 : 128] will be programmed O=00012F00
& Yhen the OTP bit iz set 1", it cannot be zet to'0' again,

Do pou want to fuse it?

Ve Mo

Fuse CFG bits

m Enable CFG Bits to be fused (for example, ‘W’ bit and ‘B’ bit).
m Click FUSE CFG to fuse the given bits.

Figure 13-6. CFG Fuse Interface

=Tk
—Fuse OTP
@ 031 - o] 063 032]
095 : 064] (127 : 098]
153 128] 191 160
C [223:192] " [255: 224]
" [287 : 256]
OTP data in [(%00000000 & o 0kl 234300
FUSE OTP |

Fusze CFG
Mw  VMeECJICrRITCRICRICREICE

FUSE EFGl

Cancel |

m The fuse operation must be hand checked by user with warning information.

Figure 13-7. CFG Fuse Confirmation Message Dialogue
il
The OTP bitz in [319 : 264] will be programmed Ox00000003
& When the OTP bit iz set "1°, it cannot be zet to ' again,

Do you want to fuge ity

Yes Mo

ATMEL

SAM-BA User Guide I ) 13-3

6421B-ATARM—xx-xxx-11




OTP Interface

13-4

m These CFG bits are inactive after they are fused.

Figure 13-8. Fuse CFG

=101 %]

—Fuze OTF
¢ 031 ; o00] 063 132]
095 - 054] € (127 - 098]
& [153:128] (191 : 160]
C [223:192] " [255 - 224]
(287 : 256]
OTP data in [0x00012F00 & g 041 234abcd
FUSE OTP|

Fusze CFG

MFw FETCJIRBICRICEBICRIR

FUSE EFGl

Cancel |

ATMEL

SAM-BA User Guide

6421B-ATARM—xx-xxx-11



ATMEL

Y

Section 14

Revision History

141 Revision History

Table 14-1.
Change
Document Comments Request Ref.
6421B
6421A First issue.

SAM-BA User Guide

13-1

6421B-ATARM—xx-xxx-11



AIMEL

Y

Headquarters

International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600

Atmel Asia Limited
Unit 01-5 & 16, 19F

BEA Tower, Millennium City 5

418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG

Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Product Contact

Atmel Munich GmbH
Business Campus

Parkring 4

D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
JAPAN

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Web Site
www.atmel.com
www.atmel.com/AT91SAM

Literature Requests
www.atmel.com/literature

Technical Support
AT91SAM Support
Atmel technical support

Sales Contacts
www.atmel.com/contacts/

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted

for use as components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof DataFlash®, QTouch®, SAM-BA® and others are regis-
tered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM®, Thumb® and the ARMPowered logo® and others are registered

trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

6421B—ATARM—xx-xxx-11


http://www.atmel.com/
www.atmel.com
http://www.atmel.com/products/AT91CAP/
http://www.atmel.com/products/AT91/
http://support.atmel.no/bin/customer
mailto:info@dream.fr <info@dream.fr>
mailto:asic@atmel.com <asic@atmel.com>
mailto:asic@atmel.com <asic@atmel.com>
http://www.atmel.com/dyn/products/support.asp
http://www.atmel.com/contacts/
http://www.atmel.com/contacts/

	Section 1
	Introduction
	1.1 Scope
	1.2 Key Features


	Section 2
	Installation
	2.1 Windows® Vista and Windows® 7
	2.2 Installing and Using Two Versions in Parallel
	2.3 Installing SAM-BA


	Section 3
	SAM-BA Architecture
	3.1 Contents
	3.1.1 applets Directory
	3.1.2 doc Directory
	3.1.3 drv Directory
	3.1.4 examples Directory
	3.1.5 tcl_lib Directory
	3.1.6 sam-ba.exe



	Section 4
	Board Connection
	4.1 USB Connection
	4.1.1 USB CDC Driver Installation

	4.2 JLINK/SAM_ICE Connection
	4.2.1 J-LINK Speed
	4.2.2 Updating J-Link/SAM-ICE Software
	4.2.3 JTAG Communication Link

	4.3 COM Port Connection
	4.4 Connect & Disconnect


	Section 5
	Running SAM-BA
	5.1 Execute SAM-BA
	5.2 Select Connection
	5.2.1 Optional J-LINK Speed Selection When Connecting with J-LINK

	5.3 Select Target Board
	5.4 Customize Low level Initialization
	5.4.1 User Interface of Low Level Initialization SAM-BA

	5.5 SAM-BA Task


	Section 6
	SAM-BA GUI
	6.1 SAM-BA Main Window
	6.2 Memory Display Area
	6.2.1 Read Memory Content
	6.2.2 Edit Memory Content

	6.3 Memory Download Area
	6.3.1 Upload a File
	6.3.2 Download a File
	6.3.3 Compare Memory with a File

	6.4 Script File Functionality
	6.4.1 Start / Stop / Reset Recording
	6.4.2 Editing the Script File
	6.4.3 Execute the Script File



	Section 7
	SAM-BA TCL Commands
	7.1 SAM-BA Scripting Environment
	7.2 SAM-BA Built-in Commands
	7.2.1 Command Description
	7.2.2 Additional Command

	7.3 Example Scripts


	Section 8
	Sam-ba.dll
	8.1 API Function
	8.1.1 AT91Boot_Scan
	8.1.2 AT91Boot_Open
	8.1.3 AT91Boot_Close
	8.1.4 AT91Boot_Write_Int
	8.1.5 AT91Boot_Write_Short
	8.1.6 AT91Boot_Write_Byte
	8.1.7 AT91Boot_Write_Data
	Code Example
	8.1.8 AT91Boot_Read_Int
	8.1.9 AT91Boot_Read_Short
	8.1.10 AT91Boot_Read_Byte
	8.1.11 AT91Boot_Read_Data
	8.1.12 AT91Boot_Go
	8.1.13 AT91Boot_JlinkSetSpeed

	8.2 API Using Sam-ba.dll
	8.2.1 ole_with_mfc
	8.2.2 ole_without_mfc
	8.2.3 Launch Applets



	Section 9
	Applets
	9.1 Applet Workflow
	9.2 Applet Startup
	9.3 Runtime Operations
	9.4 Applet Mailbox
	9.5 Build Applets
	9.5.1 Required Tools for Compilation Applets
	9.5.2 Make

	9.6 Applets Initialization and Usage
	9.6.1 Memory Programming Principle
	9.6.2 External Memory



	Section 10
	SAM-BA TCL Scripts
	10.1 Scripts Overview
	10.2 Board Description File
	10.2.1 Memory Scripts Example:
	10.2.2 NAND Flash Module Declare Example
	10.2.3 NAND Flash Memory Scripts Example



	Section 11
	NAND Flash with PMECC Interface
	11.1 NAND PMECC Interface
	11.1.1 Pmecc Configuration
	11.1.2 Enable OS PMECC Parameters

	11.2 PMECC Header Configuration in Command Line
	11.3 NAND Flash Boot
	11.4 Example of TCL Script for NAND Flash


	Section 12
	SAM-BA Customization
	12.1 Add a New Board
	12.2 Modify Main Oscillator
	12.3 Modify Pinout
	12.4 Check Point When Failed to Access Customer External Memory
	12.4.1 SDRAM/DDRAM Access
	12.4.2 NAND Flash Access
	12.4.3 DataFlash & Serial Flash Access
	12.4.4 NOR Flash Access
	12.4.5 EEPROM Access



	Section 13
	OTP Interface
	13.1 OTP Interface
	13.2 OTP read
	13.3 OTP Fuse


	Section 14
	Revision History
	14.1 Revision History





